Placing Unprecedented Recent Fir Growth in a European-Wide and Holocene-Long Context. Büntgen, U., Tegel, W., Kaplan, J. O., Schaub, M., Hagedorn, F., Bürgi, M., Brázdil, R., Helle, G., Carrer, M., Heussner, K., Hofmann, J., Kontic, R., Kyncl, T., Kyncl, J., Camarero, J. J., Tinner, W., Esper, J., & Liebhold, A. 12(2):100–106.
Placing Unprecedented Recent Fir Growth in a European-Wide and Holocene-Long Context [link]Paper  doi  abstract   bibtex   
Forest decline played a pivotal role in motivating Europe's political focus on sustainability around 35 years ago. Silver fir (Abies alba) exhibited a particularly severe dieback in the mid-1970s, but disentangling biotic from abiotic drivers remained challenging because both spatial and temporal data were lacking. Here, we analyze 14 136 samples from living trees and historical timbers, together with 356 pollen records, to evaluate recent fir growth from a continent-wide and Holocene-long perspective. Land use and climate change influenced forest growth over the past millennium, whereas anthropogenic emissions of acidic sulfates and nitrates became important after about 1850. Pollution control since the 1980s, together with a warmer but not drier climate, has facilitated an unprecedented surge in productivity across Central European fir stands. Restricted fir distribution prior to the Mesolithic and again in the Modern Era, separated by a peak in abundance during the Bronze Age, is indicative of the long-term interplay of changing temperatures, shifts in the hydrological cycle, and human impacts that have shaped forest structure and productivity.
@article{buntgenPlacingUnprecedentedRecent2014,
  title = {Placing Unprecedented Recent Fir Growth in a {{European}}-Wide and {{Holocene}}-Long Context},
  author = {Büntgen, Ulf and Tegel, Willy and Kaplan, Jed O. and Schaub, Marcus and Hagedorn, Frank and Bürgi, Matthias and Brázdil, Rudolf and Helle, Gerhard and Carrer, Marco and Heussner, Karl-Uwe and Hofmann, Jutta and Kontic, Raymond and Kyncl, Tomáš and Kyncl, Josef and Camarero, Julio J. and Tinner, Willy and Esper, Jan and Liebhold, Andrew},
  date = {2014-03},
  journaltitle = {Frontiers in Ecology and the Environment},
  volume = {12},
  pages = {100--106},
  issn = {1540-9295},
  doi = {10.1890/130089},
  url = {https://doi.org/10.1890/130089},
  abstract = {Forest decline played a pivotal role in motivating Europe's political focus on sustainability around 35 years ago. Silver fir (Abies alba) exhibited a particularly severe dieback in the mid-1970s, but disentangling biotic from abiotic drivers remained challenging because both spatial and temporal data were lacking. Here, we analyze 14 136 samples from living trees and historical timbers, together with 356 pollen records, to evaluate recent fir growth from a continent-wide and Holocene-long perspective. Land use and climate change influenced forest growth over the past millennium, whereas anthropogenic emissions of acidic sulfates and nitrates became important after about 1850. Pollution control since the 1980s, together with a warmer but not drier climate, has facilitated an unprecedented surge in productivity across Central European fir stands. Restricted fir distribution prior to the Mesolithic and again in the Modern Era, separated by a peak in abundance during the Bronze Age, is indicative of the long-term interplay of changing temperatures, shifts in the hydrological cycle, and human impacts that have shaped forest structure and productivity.},
  keywords = {*imported-from-citeulike-INRMM,~INRMM-MiD:c-13581715,~to-add-doi-URL,abies-alba,abies-spp,central-europe,forest-resources,historical-perspective,holocene,paleo-climate,silver-fir,species-distribution},
  number = {2}
}

Downloads: 0