Unusual chemoselective rhII -Catalysed transformations of β-diazocarbonyl piperidine cores. Bonetti, A., Beccalli, E., Caselli, A., Clerici, F., Pellegrino, S., & Gelmi, M. Chemistry - A European Journal, 21(4):1692-1703, Wiley-VCH Verlag, 2015. cited By 9
Unusual chemoselective rhII -Catalysed transformations of β-diazocarbonyl piperidine cores [link]Paper  doi  abstract   bibtex   
The reactivity of various β-diazocarbonyl piperidine scaffolds, characterised by an increased molecular complexity, was tested with various RhII catalysts. The structure of the starting reagent is of relevance to the synthetic results. An unexpected dimerisation took place, starting from the simple piperidine scaffold, to give the hexahydrotetrazine ring system. Products derived from a nitrogen ylide intermediate or aromatic substitution (1,3,4,5-tetrahydro-2,5-methanobenzo[c]azepine and 1,2,3,3a-tetrahydrocyclopenta-[de]isoquinolin-4(5 H)-one rings, respectively) were obtained from tetrahydroisoquinoline derivatives. The chemoselectivity of the reaction could be controlled by the choice of starting reagent, RhII catalyst and the reaction conditions. Finally, it was found that the azepino heterocycle could coordinate to the catalyst to give new RhII complexes. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
@ARTICLE{Bonetti20151692,
author={Bonetti, A. and Beccalli, E. and Caselli, A. and Clerici, F. and Pellegrino, S. and Gelmi, M.L.},
title={Unusual chemoselective rhII -Catalysed transformations of β-diazocarbonyl piperidine cores},
journal={Chemistry - A European Journal},
year={2015},
volume={21},
number={4},
pages={1692-1703},
doi={10.1002/chem.201405197},
note={cited By 9},
url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84920971384&doi=10.1002%2fchem.201405197&partnerID=40&md5=69b12711759ed296e7e8e85264cc2ece},
affiliation={DISFARM, Sezione di Chimica Generale e Organica A. Marchesini, Universitá degli Studi Milano, Via Venezian 21, Milano, 20133, Italy; Dipartimento di Chimica, Universitá degli Studi di Milano And, CNR - Istituto di Scienze e Tecnologie Molecolari, via Golgi 19, Milano, I-20133, Italy},
abstract={The reactivity of various β-diazocarbonyl piperidine scaffolds, characterised by an increased molecular complexity, was tested with various RhII catalysts. The structure of the starting reagent is of relevance to the synthetic results. An unexpected dimerisation took place, starting from the simple piperidine scaffold, to give the hexahydrotetrazine ring system. Products derived from a nitrogen ylide intermediate or aromatic substitution (1,3,4,5-tetrahydro-2,5-methanobenzo[c]azepine and 1,2,3,3a-tetrahydrocyclopenta-[de]isoquinolin-4(5 H)-one rings, respectively) were obtained from tetrahydroisoquinoline derivatives. The chemoselectivity of the reaction could be controlled by the choice of starting reagent, RhII catalyst and the reaction conditions. Finally, it was found that the azepino heterocycle could coordinate to the catalyst to give new RhII complexes. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.},
author_keywords={Catalysis;  Chemoselective reactions;  Hexahydrotetrazines;  Rhodium;  β-diazocarbonyl piperidines},
keywords={Aromatic compounds;  Catalysis;  Catalysts;  Chemical reactions;  Rhodium;  Scaffolds, Aromatic substitutions;  Chemo-selectivity;  Chemoselective;  Chemoselective reactions;  Hexahydrotetrazines;  Molecular complexity;  Reaction conditions;  Tetrahydroisoquinolines, Rhodium compounds},
references={Ye, T., McKervey, M.A., (1994) Chem. Rev., 94, pp. 1091-1160; Zhang, Z., Wang, J., (2008) Tetrahedron, 64, pp. 6577-6605; Trindade, A.F., Coelho, J.A.S., Afonso, C.A.M., Veiros, L.F., Gois, P.M.P., (2012) ACS Catal., 2, pp. 370-383; Davies, H.M.L., Morton, D., (2011) Chem. Soc. Rev., 40, pp. 1857-1869; Doyle, M.P., Duffy, R., Ratnikov, M., Zhou, L., (2010) Chem. Rev., 110, pp. 704-724; Padwa, A., (2009) Chem. Soc. Rev., 38, pp. 3072-3081; Wee, A.G.H., (2006) Curr. Org. Synth., 3, pp. 499-555; Gois, P.M.P., Afonso, C.A., (2004) Eur. J. Org. Chem., pp. 3773-3788; Doyle, M.P., McKervey, M.A., Ye, T., (1998) Modern Catalytic Methods For Organic Synthesis With Diazo Compounds, , Wiley, New York; Wyatt, E.E., Galloway, W.R.J.D., Spring, D.R., (2011) Synlett, 10, pp. 1449-1453; Maguire, A.R., O'Leary, P., Harrington, F., Lawrence, S.E., Blake, A.J., (2001) J. Org. Chem., 66, pp. 7166-7177. , and references therein; Taber, D.F., Paquette, C.M., Gu, P., Tian, W., (2013) J. Org. Chem., 78, pp. 9772-9780; Archambeau, A., Miege, F., Meyer, C., Cossy, J., (2012) Angew. Chem. Int. Ed., 51, pp. 11540-11544; Archambeau, A., Miege, F., Meyer, C., Cossy, J., (2012) Angew. Chem., 124, pp. 11708-11712; Burke, S.D., Grieco, P.A., (1979) Org. React., 26, pp. 361-475; Miah, S., Slawin, A.M.Z., Moody, C.J., Sheehan, S.M., Marino, J.P., Semones, M.A., Padwa, A., Richards, I.C., (1996) Tetrahedron, 52, pp. 2489-2514; Padwa, A., Austin, D.J., (1994) Angew. Chem. Int. Ed. Engl., 33, pp. 1797-1815; Padwa, A., Austin, D.J., (1994) Angew. Chem., 106, pp. 1881-1899; Tram, N.T.N., Mitova, M., Bankova, V., Handjieva, N., Popov, S.S., (2002) Z. Naturforsch. C, 57, pp. 239-242; Hendrickson, J.B., Bogard, T.L., Fisch, M.E., Crossert, S., Yoshimura, N., (1974) J. Am. Chem. Soc., 96, pp. 7781-7789; Evidente, A., Kireev, A.S., Jenkins, A.R., Romero, A.E., Steelant, W.F.A., Van Slambrouck, S., Kornienko, A., (2009) Planta Med., 75, pp. 501-507; Peña, B., Barhoumi, R., Burghardt, R.C., Turro, C., Dunbar, K.R., (2014) J. Am. Chem. Soc., 136, pp. 7861-7864; You, H., Wang, Y., Zhao, X., Chen, S., Liu, Y., (2013) Organometallics, 32, pp. 2698-2704; Szilvágyi, G., Brém, B., Báti, G., Tölgyesi, L., Hollósi, M., Vass, E., (2013) Dalton Trans., 42, pp. 13137-13144; Amo-Ochoa, P., Jiménez-Aparicio, R., Perles, J., Torres, M.R., Gennari, M., Zamora, F., (2013) Cryst. Growth Des., 13, pp. 4977-4985; Bocian, W., Jaźwiński, M., Sadlej, A., (2008) Magn. Reson. Chem., 46, pp. 156-165; Tsutsui, H., Yamaguchi, Y., Kitagaki, S., Nakamura, S., Anada, M., Hashimoto, S., (2003) Tetrahedron: Asymmetry, 14, pp. 817-821. , and references therein; Pruchnik, F.P., Robert, F., Jeannin, Y., Jeannin, S., (1996) Inorg. Chem., 35, pp. 4261-4263; Cushman, M., Abbaspour, A., Gupta, Y.P., (1990) J. Am. Chem. Soc., 112, p. 5898; Bertani, B., Di Fabio, R., Micheli, F., Roscic, M., Zonzini, L., (2010) Chem. Abstr., 154, p. 88102. , PCT Int. Appl. PIXXD2 WO 2010146025A1 20101223; Mejia-Oneto, J.M., Padwa, A., (2004) Tetrahedron Lett., 45, pp. 9115-9118; Gellman, S.H., Woll, M.G., Lai, J.R., Murray, J., (2003) Chem. Abstr., 139, p. 381752. , USXXCO US 20030211999A1 20031113; Hong, X., Mejía-Oneto, J.M., France, S., Padwa, A., (2007) Arkivoc, 5, pp. 125-138; Padwa, A., Lynch, S.M., Mej A-Oneto, J.M., Zhang, H., (2005) J. Org. Chem., 70, pp. 2206-2218; Bonetti, A., Clerici, F., Foschi, F., Nava, D., Pellegrino, S., Penso, M., Soave, R., Gelmi, M.L., (2014) Eur. J. Org. Chem., pp. 3203-3209; Saito, A., Numaguchi, J., Hanzawa, Y., (2007) Tetrahedron Lett., 48, pp. 835-839; Zalán, Z., Martinek, T.A., Lázár, L., Sillanpää, R., Fülöp, F., (2006) Tetrahedron, 62, pp. 2883-2891; Cho, S.D., Song, S.Y., Hur, E.J., Chen, M., Joo, W.H., Falck, J.R., Yoon, Y.J., Shin, D.S., (2001) Tetrahedron Lett., 42, pp. 6251-6253; Schjøth-Eskesen, C., Jensen, H.H., (2009) Synth. Commun., 39, pp. 3243-3253; Morrell, A., Antony, S., Kohlhagen, G., Pommier, Y., Cushman, M., (2006) J. Med. Chem., 49, pp. 7740-7753; Blond, A., Moumné, R., Bégis, G., Pasco, M., Lecourt, T., Micouin, L., (2011) Tetrahedron Lett., 52, pp. 3201-3203; Pavlyuk, O., Teller, H., McMills, M.C., (2009) Tetrahedron Lett., 50, pp. 2716-2718; Guo, X., Yue, Y., Hu, G., Zhou, J., Zhao, Y., Yang, L., Hu, W., (2009) Synlett, 13, pp. 2109-2114; Fiori, K.W., Espino, C.G., Brodsky, B.H., Du Bois, J., (2009) Tetrahedron, 65, pp. 3042-3051; Olesen, P.H., Tùnder, J.E., Hansen, J.B., Hansen, H.C., Rimvall, K., (2000) Bioorg. Med. Chem., 8, pp. 1443-1450; Ko, K.Y., Lee, K.I., Kim, W.J., (1992) Tetrahedron Lett., 33, pp. 6651-6652; Estevan, F., Lahuerta, P., Pérez-Prieto, J., Sanaffl, M., Stiriba, S.E., Ubeda, M.A., (1997) Organometallics, 16, pp. 880-886; Hendrickson, J.B., Bogard, T.L., Fisch, M.E., (1970) J. Am. Chem. Soc., 92, pp. 5538-5539; Yates, P., Giles, R.G.F., Farnum, D.G., (1969) Can. J. Chem., 47, pp. 3997-4004; Curley, J.J., Murahashi, T., Cummins, C.C., (2009) Inorg. Chem., 48, pp. 7181-7193; Aquino, M.A.S., Macartney, D.H., (1987) Inorg. Chem., 26, pp. 2696-2699; Cotton, F.A., Dunbar, K.R., Verbruggen, M.G., (1987) J. Am. Chem. Soc., 109, pp. 5498-5506; Mucedda, M., Muroni, D., Saba, A., Manassero, C., (2007) Tetrahedron, 63, pp. 12232-12238; Muroni, D., Saba, A., Culeddu, N., (2006) Tetrahedron, 62, pp. 1459-1466; Johnson, S.A., Hunt, H.R., Keumann, H.M., (1963) Inorg. Chem., 2, pp. 960-962},
correspondence_address1={Gelmi, M.L.; DISFARM, Sezione di Chimica Generale e Organica A. Marchesini, Universitá degli Studi Milano, Via Venezian 21, Italy},
publisher={Wiley-VCH Verlag},
issn={09476539},
coden={CEUJE},
language={English},
abbrev_source_title={Chem. Eur. J.},
document_type={Article},
source={Scopus},
}

Downloads: 0