A two-phase shallow debris flow model with energy balance. Bouchut, F., Fernández-Nieto, E. D., Mangeney, A., & Narbona-Narbona-Reina, G. ESAIM: Mathematical Modelling and Numerical Analysis, 49(1):101 - 140, EDP Sciences, 2015.
Paper doi bibtex @Article{bouchuthal00860871,
Title = {A two-phase shallow debris flow model with energy balance},
Author = {Bouchut, F. and Fern\'andez-Nieto, E. D. and Mangeney, A. and Narbona-Narbona-Reina, G.},
URL = {https://hal-upec-upem.archives-ouvertes.fr/hal-00860871},
Journal = {{ESAIM: Mathematical Modelling and Numerical Analysis}},
Publisher = {{EDP Sciences}},
Volume = {49},
Number = {1},
Pages = {101 - 140},
Year = {2015},
Month = Jan,
Doi = {10.1051/m2an/2014026},
Keywords = {energy balance ; two-phase flows ; Granular flows ; thin layer approximation ; non-conservative systems ; finite volume schemes ; projection method},
pdf = {https://hal-upec-upem.archives-ouvertes.fr/hal-00860871/file/bfmn.pdf},
HAL_ID = {hal-00860871},
HAL_VERSION = {v2}
}
Downloads: 0
{"_id":"q5Mm9YB56QMvFaNCg","bibbaseid":"bouchut-fernndeznieto-mangeney-narbonanarbonareina-atwophaseshallowdebrisflowmodelwithenergybalance-2015","downloads":0,"creationDate":"2017-11-07T11:05:07.598Z","title":"A two-phase shallow debris flow model with energy balance","author_short":["Bouchut, F.","Fernández-Nieto, E. D.","Mangeney, A.","Narbona-Narbona-Reina, G."],"year":2015,"bibtype":"article","biburl":"http://personal.us.es/gnarbona/wp-content/uploads/2017/11/Bibtex.txt","bibdata":{"bibtype":"article","type":"article","title":"A two-phase shallow debris flow model with energy balance","author":[{"propositions":[],"lastnames":["Bouchut"],"firstnames":["F."],"suffixes":[]},{"propositions":[],"lastnames":["Fernández-Nieto"],"firstnames":["E.","D."],"suffixes":[]},{"propositions":[],"lastnames":["Mangeney"],"firstnames":["A."],"suffixes":[]},{"propositions":[],"lastnames":["Narbona-Narbona-Reina"],"firstnames":["G."],"suffixes":[]}],"url":"https://hal-upec-upem.archives-ouvertes.fr/hal-00860871","journal":"ESAIM: Mathematical Modelling and Numerical Analysis","publisher":"EDP Sciences","volume":"49","number":"1","pages":"101 - 140","year":"2015","month":null,"doi":"10.1051/m2an/2014026","keywords":"energy balance ; two-phase flows ; Granular flows ; thin layer approximation ; non-conservative systems ; finite volume schemes ; projection method","pdf":"https://hal-upec-upem.archives-ouvertes.fr/hal-00860871/file/bfmn.pdf","hal_id":"hal-00860871","hal_version":"v2","bibtex":"@Article{bouchuthal00860871,\r\n Title = {A two-phase shallow debris flow model with energy balance},\r\n Author = {Bouchut, F. and Fern\\'andez-Nieto, E. D. and Mangeney, A. and Narbona-Narbona-Reina, G.},\r\n URL = {https://hal-upec-upem.archives-ouvertes.fr/hal-00860871},\r\n Journal = {{ESAIM: Mathematical Modelling and Numerical Analysis}},\r\n Publisher = {{EDP Sciences}},\r\n Volume = {49},\r\n Number = {1},\r\n Pages = {101 - 140},\r\n Year = {2015},\r\n Month = Jan,\r\n Doi = {10.1051/m2an/2014026},\r\n Keywords = {energy balance ; two-phase flows ; Granular flows ; thin layer approximation ; non-conservative systems ; finite volume schemes ; projection method},\r\n pdf = {https://hal-upec-upem.archives-ouvertes.fr/hal-00860871/file/bfmn.pdf},\r\n HAL_ID = {hal-00860871},\r\n HAL_VERSION = {v2}\r\n}\r\n","author_short":["Bouchut, F.","Fernández-Nieto, E. D.","Mangeney, A.","Narbona-Narbona-Reina, G."],"key":"bouchuthal00860871","id":"bouchuthal00860871","bibbaseid":"bouchut-fernndeznieto-mangeney-narbonanarbonareina-atwophaseshallowdebrisflowmodelwithenergybalance-2015","role":"author","urls":{"Paper":"https://hal-upec-upem.archives-ouvertes.fr/hal-00860871"},"keyword":["energy balance ; two-phase flows ; Granular flows ; thin layer approximation ; non-conservative systems ; finite volume schemes ; projection method"],"downloads":0,"html":""},"search_terms":["two","phase","shallow","debris","flow","model","energy","balance","bouchut","fernández-nieto","mangeney","narbona-narbona-reina"],"keywords":["energy balance ; two-phase flows ; granular flows ; thin layer approximation ; non-conservative systems ; finite volume schemes ; projection method"],"authorIDs":[],"dataSources":["etjJrbBAEFegwPGzC"]}