Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils. Bourdon, M., Lyczakowski, J. J., Cresswell, R., Amsbury, S., Vilaplana, F., Le Guen, M., Follain, N., Wightman, R., Su, C., Alatorre-Cobos, F., Ritter, M., Liszka, A., Terrett, O. M., Yadav, S. R., Vatén, A., Nieminen, K., Eswaran, G., Alonso-Serra, J., Müller, K. H., Iuga, D., Miskolczi, P. C., Kalmbach, L., Otero, S., Mähönen, A. P., Bhalerao, R., Bulone, V., Mansfield, S. D., Hill, S., Burgert, I., Beaugrand, J., Benitez-Alfonso, Y., Dupree, R., Dupree, P., & Helariutta, Y. Nature Plants, 9(9):1530–1546, September, 2023. Number: 9 Publisher: Nature Publishing Group
Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils [link]Paper  doi  abstract   bibtex   
Plant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin–cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering.
@article{bourdon_ectopic_2023,
	title = {Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils},
	volume = {9},
	copyright = {2023 The Author(s)},
	issn = {2055-0278},
	url = {https://www.nature.com/articles/s41477-023-01459-0},
	doi = {10.1038/s41477-023-01459-0},
	abstract = {Plant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin–cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering.},
	language = {en},
	number = {9},
	urldate = {2023-09-22},
	journal = {Nature Plants},
	author = {Bourdon, Matthieu and Lyczakowski, Jan J. and Cresswell, Rosalie and Amsbury, Sam and Vilaplana, Francisco and Le Guen, Marie-Joo and Follain, Nadège and Wightman, Raymond and Su, Chang and Alatorre-Cobos, Fulgencio and Ritter, Maximilian and Liszka, Aleksandra and Terrett, Oliver M. and Yadav, Shri Ram and Vatén, Anne and Nieminen, Kaisa and Eswaran, Gugan and Alonso-Serra, Juan and Müller, Karin H. and Iuga, Dinu and Miskolczi, Pal Csaba and Kalmbach, Lothar and Otero, Sofia and Mähönen, Ari Pekka and Bhalerao, Rishikesh and Bulone, Vincent and Mansfield, Shawn D. and Hill, Stefan and Burgert, Ingo and Beaugrand, Johnny and Benitez-Alfonso, Yoselin and Dupree, Ray and Dupree, Paul and Helariutta, Ykä},
	month = sep,
	year = {2023},
	note = {Number: 9
Publisher: Nature Publishing Group},
	keywords = {Biofuels, Molecular engineering in plants},
	pages = {1530--1546},
}

Downloads: 0