On the existence and uniqueness for an age-dependent population model with nonlinear growth. Bouzinab, A. & Arino, O. Facta Univ. Ser. Math. Inform., 1993.
abstract   bibtex   
The authors study an age-dependent population model having the form $$∂u\over ∂a (a, t)+ ∂u\over ∂t (a, t)= -\lambda(a, t, u) u,\quad a∈[0, A),\quad t\ge 0,$$ $$u(0, t)= \int\sp A\sb 0 f(a, t, u(a, t))da,\ t > 0,\ u(a, 0)= p(a),\ a∈[0, A).$$ For the function $\lambda(a, t, u)$ they assumed that it is non-decreasing, while the function $f(a, t, u)$ satisfies the estimate $f(a, t, u)\le Cu$, $a∈[0, A)$, $t> 0$. The main result gives existence and uniqueness of the solution. The proof of the existence is based on a suitable compactness argument.
@Article{BouzinabArino1993,
  author     = {Bouzinab, A. and Arino, Ovide},
  title      = {On the existence and uniqueness for an age-dependent population model with nonlinear growth},
  journal    = {Facta Univ. Ser. Math. Inform.},
  year       = {1993},
  number     = {8},
  pages      = {55--68},
  issn       = {0352-9665},
  abstract   = {The authors study an age-dependent population model
                  having the form $${\partial u\over \partial a} (a,
                  t)+ {\partial u\over \partial t} (a, t)= -\lambda(a,
                  t, u) u,\quad a\in [0, A),\quad t\ge 0,$$ $$u(0, t)=
                  \int\sp A\sb 0 f(a, t, u(a, t))da,\ t > 0,\ u(a, 0)=
                  p(a),\ a\in [0, A).$$ For the function $\lambda(a,
                  t, u)$ they assumed that it is non-decreasing, while
                  the function $f(a, t, u)$ satisfies the estimate
                  $f(a, t, u)\le Cu$, $a\in [0, A)$, $t> 0$. The main
                  result gives existence and uniqueness of the
                  solution. The proof of the existence is based on a
                  suitable compactness argument.},
  classmath  = {*35A05 General existence and uniqueness theorems (PDE) 35F30 Boundary value problems for first order nonlinear PDE },
  fjournal   = {Facta Universitatis. Series: Mathematics and Informatics},
  keywords   = {age-dependent population model},
  mrclass    = {35K55 (92D25)},
  mrnumber   = {96f:35070},
  mrreviewer = {R. C. MacCamy},
  reviewer   = {V.Georgiev (Sofia)},
}

Downloads: 0