2H NMR theory of transition metal dihydrides: Coherent and incoherent quantum dynamics. Buntkowsky, G., Limbach, H.-., Wehrmann, F., Sack, I., Vieth, H.-., & Morris, R‥ Journal of Physical Chemistry A, 101(26):4679-4689, 1997. cited By (since 1996)21
2H NMR theory of transition metal dihydrides: Coherent and incoherent quantum dynamics [link]Paper  abstract   bibtex   
In this paper a simple phenomenological description of the effects of coherent quantum and incoherent mutual exchange of two deuteron nuclei in solid state transition metal complexes on their 2H NMR spectra is given. This description is based on the quantum-mechanical density matrix formalism developed by Alexander and Binsch. Only the nuclear spin system is treated quantum mechanically. The quantum exchange interaction in NMR is included in the nuclear spin Hamiltonian, and the interaction with the surrounding bath and incoherent exchange processes are treated as phenomenological rate processes described by rate constants. The incoherent exchange corresponds formally to 180° rotations or jumps of the D-D vector around an axis perpendicular to this vector and averages the different quadrupole splitting of the two deuterons. In principle the dideuteron pair will exist in several rovibrational states. However, if the interconversion among these states is fast, the dideuteron exchange can be described by an average exchange coupling or tunnel frequency X12 and a single average rate constant k12 of the incoherent exchange. It is shown that the incoherent exchange gives rise to a relaxation of rate -2k12 between coherences created between states of different symmetry. The 2H NMR line shape of a dideuteron pair in the solid state as a function of tunnel and incoherent exchange rate is studied numerically. For single crystals, the effects of coherent and incoherent exchange are strongly different, in particular if the rate constants are on the order of the quadrupole splitting. The spectra of nonoriented powder samples are more similar to each other. Nevertheless, our calculations show that there are still pronounced differences, which should allow the distinction between coherent and incoherent exchange even in nonoriented samples.
@article{ Buntkowsky19974679,
  author = {Buntkowsky, G.a  and Limbach, H.-H.a  and Wehrmann, F.a  and Sack, I.a  and Vieth, H.-M.a  and Morris, R.H.b },
  title = {2H NMR theory of transition metal dihydrides: Coherent and incoherent quantum dynamics},
  journal = {Journal of Physical Chemistry A},
  year = {1997},
  volume = {101},
  number = {26},
  pages = {4679-4689},
  note = {cited By (since 1996)21},
  url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-0031166496&partnerID=40&md5=e8c63f37f2303b19611d7a01b89c054f},
  affiliation = {Institut für Organische Chemie, Institut für Experimentalphysik, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ont. M5S 3H6, Canada},
  abstract = {In this paper a simple phenomenological description of the effects of coherent quantum and incoherent mutual exchange of two deuteron nuclei in solid state transition metal complexes on their 2H NMR spectra is given. This description is based on the quantum-mechanical density matrix formalism developed by Alexander and Binsch. Only the nuclear spin system is treated quantum mechanically. The quantum exchange interaction in NMR is included in the nuclear spin Hamiltonian, and the interaction with the surrounding bath and incoherent exchange processes are treated as phenomenological rate processes described by rate constants. The incoherent exchange corresponds formally to 180° rotations or jumps of the D-D vector around an axis perpendicular to this vector and averages the different quadrupole splitting of the two deuterons. In principle the dideuteron pair will exist in several rovibrational states. However, if the interconversion among these states is fast, the dideuteron exchange can be described by an average exchange coupling or tunnel frequency X12 and a single average rate constant k12 of the incoherent exchange. It is shown that the incoherent exchange gives rise to a relaxation of rate -2k12 between coherences created between states of different symmetry. The 2H NMR line shape of a dideuteron pair in the solid state as a function of tunnel and incoherent exchange rate is studied numerically. For single crystals, the effects of coherent and incoherent exchange are strongly different, in particular if the rate constants are on the order of the quadrupole splitting. The spectra of nonoriented powder samples are more similar to each other. Nevertheless, our calculations show that there are still pronounced differences, which should allow the distinction between coherent and incoherent exchange even in nonoriented samples.},
  keywords = {Deuterium;  Hydrides;  Mathematical models;  Matrix algebra;  Nuclear magnetic resonance spectroscopy;  Powders;  Quantum theory;  Single crystals, Deuterium magnetic resonance;  Deuterons;  Quantum mechanical calculations, Transition metal compounds},
  references = {Kubas, G.J., Ryan, R.R., Swanson, B.I., Vergamini, P.J., Wasserman, H.J., (1984) J. Am. Chem. Soc., 116, p. 451; Kubas, G.J., (1988) Acc. Chem. Res., 21, p. 120; Rattan, G., Kubas, G.J., Unkefer, C.J., Van Der Sluys, L.S., Kubat-Martin, K.A., (1990) J. Am. Chem. Soc., 112, p. 3855; Eckert, J., Kubas, G.J., (1993) J. Phys. Chem., 97, p. 2378; Eckert, J., Jensen, C.M., Jones, G., Clot, E., Eisenstein, O., (1993) J. Am. Chem. Soc., 115, p. 11056; Jessop, P.G., Morris, R.J., (1992) Coord. Chem. Rev., 121, p. 155; Arliguie, T., Chaudret, B., Devillers, J., Poilblanc, R., (1987) C. R. Acad. Sci. Paris, Ser. II, 305, p. 1523; Antinolo, A., Chaudret, B., Commenges, G., Fajardo, M., Jalon, F., Morris, R.H., Otero, A., Schweitzer, C.T., (1988) J. Chem. Soc., Chem. Commun., p. 1210; Arliguie, T., Border, C., Chaudret, B., Devilles, J., Poilblanc, R., (1989) Organometallics, 8, p. 1308; Arliguie, T., Chaudret, B., Jalon, F.A., Otero, A., Lopez, J.A., Lahoz, F.J., (1991) Organometallics, 10, p. 1888; Paciello, R.R., Manriquez, J.M., Bercaw, J.E., (1990) Organometallics, 9, p. 260; Heinekey, D.M., Payne, N.G., Schulte, G.K., (1988) J. Am. Chem. Soc., 110, p. 2303; Heinekey, D.M., Millar, J.M., Koetzle, T.F., Payne, N.G., Zilm, K.W., (1990) J. Am. Chem. Soc., 112, p. 909; Limbach, H.H., Scherer, G., Meschede, L., Aguilar-Parrilla, F., Wehrle, B., Braun, J., Hoelger, Ch., Chaudret, B., NMR Studies of Elementary Steps of Hydrogen Transfer in Condensed Phases (1994) Ultrafast Reaction Dynamics and Solvent Effects, Experimental and Theoretical Aspects, p. 225. , Gauduel, Y., Rossky, P. J., Eds.; American Institute of Physics: New York Chapter 2; Antinolo, A., Carrillo, F., Chaudret, B., Fajardo, M., Fernandez-Baeza, J., Lanfranchi, M., Limbach, H.H., Pellinghelli, M.A., (1994) Inorg. Chem., 33, p. 5163; Ayllon, J.A., Sabo-Etienne, S., Chaudret, B., Ulrich, S., Limbach, H.H., Inorg.Chem., , in press; Zilm, K.W., Heinekey, D.M., Millar, J.M., Payne, N.G., Demou, P., (1989) J. Am. Chem. Soc., 111, p. 3088; Zilm, K.W., Heinekey, D.M., Millar, J.M., Payne, N.G., Neshyba, S.P., Duchamp, J.C., Szczyrba, J., (1990) J. Am. Chem. Soc., 112, p. 920; Zilm, K.W., Millar, J.M., (1990) Adv. Magn. Reson., 15, p. 16; Inati, S.J., Zilm, K.W., (1992) Phys. Rev. Lett., 68, p. 3273; Jones, D., Labinger, J.A., Weitekamp, J., (1989) J. Am. Chem. Soc., 111, p. 3087; Szymanski, S., (1994) J. Mol. Struct., 321, p. 115; Limbach, H.H., Scherer, G., Maurer, M., Chaudret, B., (1992) Angew. Chem., 104, p. 1414; (1990) Angew. Chem., Int. Ed. Engl., 31, p. 1369; Barthelat, J.C., Chaudret, B., Dauday, J.P., De Loth, Ph., Poilblanc, R., (1991) J. Am. Chem. Soc., 113, p. 9896; Jarid, A., Moreno, M., Lledós, A., Lluch, J.M., Bertran, J., (1993) J. Am. Chem. Soc., 115, p. 5861; Jarid, A., Moreno, M., Lledós, A., Lluch, J.M., Bertran, J., (1995) J. Am. Chem. Soc., 117, p. 1069; Clot, E., Leforestier, C., Eisenstein, O., Pelissier, M., (1995) J. Am. Chem. Soc., 117, p. 1797; Buntkowsky, G., Bargon, J., Limbach, H.H., (1996) J. Am. Chem. Soc., 30, p. 8677; Alexander, S., (1962) J. Chem.Phys., 37, p. 971; Binsch, G., (1969) J. Am. Chem. Soc., 91, p. 1304; Kleier, D.A., Binsch, G., (1970) J. Magn. Reson., 3, p. 146; Szymanski, S., (1996) J. Chem.Phys., 104, p. 8216; Abragam, A., (1961) Principles of Nuclear Magnetism, , Clarendeon Press: Oxford, Chapter VII; Slichter, C.P., (1990) Principles of Magnetic Resonance, 3rd Ed., , Springer: Berlin, Heidelberg, New York; Schmidt-Rohr, K., Spiess, H.W., (1994) Multidimensional Solid-State NMR and Polymers, , Academic Press: London; Pake, G.E., (1948) J. Chem. Phys., 16, p. 327; Bernhard, T., Haeberlen, U., (1991) Chem. Phys. Lett., 186, p. 307; Detken, A., Focke, P., Zimmermann, H., Haeberlen, U., Olejniczak, Z., Lalowicz, Z.T., (1995) Z. Naturforsch., 50 A, p. 95; Lalowicz, Z.T., Werner, U., Müller-Warmuth, W., (1988) Z. Naturforsch., 43 A, p. 219; Szymanski, Olejniczak, H., Haeberlen, U., (1996) Physica B, 226, p. 161; Dirac, P.A.M., (1958) Quantum Mechanics, 4th Ed., , Oxford University Press: London; Schlabach, M., Rumpel, H., Limbach, H.H., (1989) Angew. Chem., 101, p. 84; (1989) Angew. Chem., Int. Ed. Engl., 28, p. 78; Schlabach, M., Scherer, G., Limbach, H.H., (1991) J. Am. Chem. Soc., 113, p. 3550; Braun, J., Limbach, H.H., Williams, P., Morimoto, H., Wemmer, D., (1996) J. Am. Chem. Soc., 30, p. 7231; Scheurer, Ch., Widenbruch, R., Meyer, R., Ernst, R.R., J. Chem. Phys., , Submitted for publication; Messiah, A., (1970) Quantum Mechanics, 2. , North Holland Publishing Company: Amsterdam; Ernst, R.R., Bodenhausen, G., Wokaun, A., (1987) Principles of NMR in One and Two Dimensions, , Clarendon Press: Oxford; (1994) LAPACK Program Package, , University of California, Berkeley, email address: netlib@research.att.com},
  correspondence_address1 = {Buntkowsky, G.; Institut für Organische Chemie, Institut für Experimentalphysik, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany},
  issn = {10895639},
  coden = {JPCAF},
  language = {English},
  abbrev_source_title = {J Phys Chem A},
  document_type = {Article},
  source = {Scopus}
}

Downloads: 0