PIF7 is a master regulator of thermomorphogenesis in shade. Burko, Y., Willige, B. C., Seluzicki, A., Novák, O., Ljung, K., & Chory, J. Nature Communications, 13(1):4942, August, 2022. Number: 1 Publisher: Nature Publishing Group
PIF7 is a master regulator of thermomorphogenesis in shade [link]Paper  doi  abstract   bibtex   
The size of plant organs is highly responsive to environmental conditions. The plant’s embryonic stem, or hypocotyl, displays phenotypic plasticity, in response to light and temperature. The hypocotyl of shade avoiding species elongates to outcompete neighboring plants and secure access to sunlight. Similar elongation occurs in high temperature. However, it is poorly understood how environmental light and temperature cues interact to effect plant growth. We found that shade combined with warm temperature produces a synergistic hypocotyl growth response that dependent on PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) and auxin. This unique but agriculturally relevant scenario was almost totally independent on PIF4 activity. We show that warm temperature is sufficient to promote PIF7 DNA binding but not transcriptional activation and we demonstrate that additional, unknown factor/s must be working downstream of the phyB-PIF-auxin module. Our findings will improve the predictions of how plants will respond to increased ambient temperatures when grown at high density.
@article{burko_pif7_2022,
	title = {{PIF7} is a master regulator of thermomorphogenesis in shade},
	volume = {13},
	copyright = {2022 The Author(s)},
	issn = {2041-1723},
	url = {https://www.nature.com/articles/s41467-022-32585-6},
	doi = {10.1038/s41467-022-32585-6},
	abstract = {The size of plant organs is highly responsive to environmental conditions. The plant’s embryonic stem, or hypocotyl, displays phenotypic plasticity, in response to light and temperature. The hypocotyl of shade avoiding species elongates to outcompete neighboring plants and secure access to sunlight. Similar elongation occurs in high temperature. However, it is poorly understood how environmental light and temperature cues interact to effect plant growth. We found that shade combined with warm temperature produces a synergistic hypocotyl growth response that dependent on PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) and auxin. This unique but agriculturally relevant scenario was almost totally independent on PIF4 activity. We show that warm temperature is sufficient to promote PIF7 DNA binding but not transcriptional activation and we demonstrate that additional, unknown factor/s must be working downstream of the phyB-PIF-auxin module. Our findings will improve the predictions of how plants will respond to increased ambient temperatures when grown at high density.},
	language = {en},
	number = {1},
	urldate = {2022-09-01},
	journal = {Nature Communications},
	author = {Burko, Yogev and Willige, Björn Christopher and Seluzicki, Adam and Novák, Ondřej and Ljung, Karin and Chory, Joanne},
	month = aug,
	year = {2022},
	note = {Number: 1
Publisher: Nature Publishing Group},
	keywords = {Light responses, Plant development, Plant signalling},
	pages = {4942},
}

Downloads: 0