AskHERMES: An online question answering system for complex clinical questions. Cao, Y., Liu, F., Simpson, P., Antieau, L., Bennett, A., Cimino, J. J, Ely, J., & Yu, H. Journal of Biomedical Informatics, 44(2):277–288, April, 2011. Paper doi abstract bibtex \textlessAbstractText Label="OBJECTIVE" NlmCategory="OBJECTIVE"\textgreaterClinical questions are often long and complex and take many forms. We have built a clinical question answering system named AskHERMES to perform robust semantic analysis on complex clinical questions and output question-focused extractive summaries as answers.\textless/AbstractText\textgreater \textlessAbstractText Label="DESIGN" NlmCategory="METHODS"\textgreaterThis paper describes the system architecture and a preliminary evaluation of AskHERMES, which implements innovative approaches in question analysis, summarization, and answer presentation. Five types of resources were indexed in this system: MEDLINE abstracts, PubMed Central full-text articles, eMedicine documents, clinical guidelines and Wikipedia articles.\textless/AbstractText\textgreater \textlessAbstractText Label="MEASUREMENT" NlmCategory="METHODS"\textgreaterWe compared the AskHERMES system with Google (Google and Google Scholar) and UpToDate and asked physicians to score the three systems by ease of use, quality of answer, time spent, and overall performance.\textless/AbstractText\textgreater \textlessAbstractText Label="RESULTS" NlmCategory="RESULTS"\textgreaterAskHERMES allows physicians to enter a question in a natural way with minimal query formulation and allows physicians to efficiently navigate among all the answer sentences to quickly meet their information needs. In contrast, physicians need to formulate queries to search for information in Google and UpToDate. The development of the AskHERMES system is still at an early stage, and the knowledge resource is limited compared with Google or UpToDate. Nevertheless, the evaluation results show that AskHERMES' performance is comparable to the other systems. In particular, when answering complex clinical questions, it demonstrates the potential to outperform both Google and UpToDate systems.\textless/AbstractText\textgreater \textlessAbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS"\textgreaterAskHERMES, available at http://www.AskHERMES.org, has the potential to help physicians practice evidence-based medicine and improve the quality of patient care.\textless/AbstractText\textgreater
@article{cao_askhermes_2011,
title = {{AskHERMES}: {An} online question answering system for complex clinical questions},
volume = {44},
issn = {1532-0480},
shorttitle = {{AskHERMES}},
url = {http://www.ncbi.nlm.nih.gov/pubmed/21256977},
doi = {10.1016/j.jbi.2011.01.004},
abstract = {{\textless}AbstractText Label="OBJECTIVE" NlmCategory="OBJECTIVE"{\textgreater}Clinical questions are often long and complex and take many forms. We have built a clinical question answering system named AskHERMES to perform robust semantic analysis on complex clinical questions and output question-focused extractive summaries as answers.{\textless}/AbstractText{\textgreater}
{\textless}AbstractText Label="DESIGN" NlmCategory="METHODS"{\textgreater}This paper describes the system architecture and a preliminary evaluation of AskHERMES, which implements innovative approaches in question analysis, summarization, and answer presentation. Five types of resources were indexed in this system: MEDLINE abstracts, PubMed Central full-text articles, eMedicine documents, clinical guidelines and Wikipedia articles.{\textless}/AbstractText{\textgreater}
{\textless}AbstractText Label="MEASUREMENT" NlmCategory="METHODS"{\textgreater}We compared the AskHERMES system with Google (Google and Google Scholar) and UpToDate and asked physicians to score the three systems by ease of use, quality of answer, time spent, and overall performance.{\textless}/AbstractText{\textgreater}
{\textless}AbstractText Label="RESULTS" NlmCategory="RESULTS"{\textgreater}AskHERMES allows physicians to enter a question in a natural way with minimal query formulation and allows physicians to efficiently navigate among all the answer sentences to quickly meet their information needs. In contrast, physicians need to formulate queries to search for information in Google and UpToDate. The development of the AskHERMES system is still at an early stage, and the knowledge resource is limited compared with Google or UpToDate. Nevertheless, the evaluation results show that AskHERMES' performance is comparable to the other systems. In particular, when answering complex clinical questions, it demonstrates the potential to outperform both Google and UpToDate systems.{\textless}/AbstractText{\textgreater}
{\textless}AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS"{\textgreater}AskHERMES, available at http://www.AskHERMES.org, has the potential to help physicians practice evidence-based medicine and improve the quality of patient care.{\textless}/AbstractText{\textgreater}},
number = {2},
urldate = {2011-03-25},
journal = {Journal of Biomedical Informatics},
author = {Cao, Yonggang and Liu, Feifan and Simpson, Pippa and Antieau, Lamont and Bennett, Andrew and Cimino, James J and Ely, John and Yu, Hong},
month = apr,
year = {2011},
pmid = {21256977 PMCID: PMC3433744},
keywords = {Algorithms, Clinical Medicine, Databases, Factual, Information Storage and Retrieval, Online Systems, Software, expert systems, natural language processing},
pages = {277--288},
}
Downloads: 0
{"_id":"B2RQkrtqPZMe96pRr","bibbaseid":"cao-liu-simpson-antieau-bennett-cimino-ely-yu-askhermesanonlinequestionansweringsystemforcomplexclinicalquestions-2011","author_short":["Cao, Y.","Liu, F.","Simpson, P.","Antieau, L.","Bennett, A.","Cimino, J. J","Ely, J.","Yu, H."],"bibdata":{"bibtype":"article","type":"article","title":"AskHERMES: An online question answering system for complex clinical questions","volume":"44","issn":"1532-0480","shorttitle":"AskHERMES","url":"http://www.ncbi.nlm.nih.gov/pubmed/21256977","doi":"10.1016/j.jbi.2011.01.004","abstract":"\\textlessAbstractText Label=\"OBJECTIVE\" NlmCategory=\"OBJECTIVE\"\\textgreaterClinical questions are often long and complex and take many forms. We have built a clinical question answering system named AskHERMES to perform robust semantic analysis on complex clinical questions and output question-focused extractive summaries as answers.\\textless/AbstractText\\textgreater \\textlessAbstractText Label=\"DESIGN\" NlmCategory=\"METHODS\"\\textgreaterThis paper describes the system architecture and a preliminary evaluation of AskHERMES, which implements innovative approaches in question analysis, summarization, and answer presentation. Five types of resources were indexed in this system: MEDLINE abstracts, PubMed Central full-text articles, eMedicine documents, clinical guidelines and Wikipedia articles.\\textless/AbstractText\\textgreater \\textlessAbstractText Label=\"MEASUREMENT\" NlmCategory=\"METHODS\"\\textgreaterWe compared the AskHERMES system with Google (Google and Google Scholar) and UpToDate and asked physicians to score the three systems by ease of use, quality of answer, time spent, and overall performance.\\textless/AbstractText\\textgreater \\textlessAbstractText Label=\"RESULTS\" NlmCategory=\"RESULTS\"\\textgreaterAskHERMES allows physicians to enter a question in a natural way with minimal query formulation and allows physicians to efficiently navigate among all the answer sentences to quickly meet their information needs. In contrast, physicians need to formulate queries to search for information in Google and UpToDate. The development of the AskHERMES system is still at an early stage, and the knowledge resource is limited compared with Google or UpToDate. Nevertheless, the evaluation results show that AskHERMES' performance is comparable to the other systems. In particular, when answering complex clinical questions, it demonstrates the potential to outperform both Google and UpToDate systems.\\textless/AbstractText\\textgreater \\textlessAbstractText Label=\"CONCLUSIONS\" NlmCategory=\"CONCLUSIONS\"\\textgreaterAskHERMES, available at http://www.AskHERMES.org, has the potential to help physicians practice evidence-based medicine and improve the quality of patient care.\\textless/AbstractText\\textgreater","number":"2","urldate":"2011-03-25","journal":"Journal of Biomedical Informatics","author":[{"propositions":[],"lastnames":["Cao"],"firstnames":["Yonggang"],"suffixes":[]},{"propositions":[],"lastnames":["Liu"],"firstnames":["Feifan"],"suffixes":[]},{"propositions":[],"lastnames":["Simpson"],"firstnames":["Pippa"],"suffixes":[]},{"propositions":[],"lastnames":["Antieau"],"firstnames":["Lamont"],"suffixes":[]},{"propositions":[],"lastnames":["Bennett"],"firstnames":["Andrew"],"suffixes":[]},{"propositions":[],"lastnames":["Cimino"],"firstnames":["James","J"],"suffixes":[]},{"propositions":[],"lastnames":["Ely"],"firstnames":["John"],"suffixes":[]},{"propositions":[],"lastnames":["Yu"],"firstnames":["Hong"],"suffixes":[]}],"month":"April","year":"2011","pmid":"21256977 PMCID: PMC3433744","keywords":"Algorithms, Clinical Medicine, Databases, Factual, Information Storage and Retrieval, Online Systems, Software, expert systems, natural language processing","pages":"277–288","bibtex":"@article{cao_askhermes_2011,\n\ttitle = {{AskHERMES}: {An} online question answering system for complex clinical questions},\n\tvolume = {44},\n\tissn = {1532-0480},\n\tshorttitle = {{AskHERMES}},\n\turl = {http://www.ncbi.nlm.nih.gov/pubmed/21256977},\n\tdoi = {10.1016/j.jbi.2011.01.004},\n\tabstract = {{\\textless}AbstractText Label=\"OBJECTIVE\" NlmCategory=\"OBJECTIVE\"{\\textgreater}Clinical questions are often long and complex and take many forms. We have built a clinical question answering system named AskHERMES to perform robust semantic analysis on complex clinical questions and output question-focused extractive summaries as answers.{\\textless}/AbstractText{\\textgreater}\n{\\textless}AbstractText Label=\"DESIGN\" NlmCategory=\"METHODS\"{\\textgreater}This paper describes the system architecture and a preliminary evaluation of AskHERMES, which implements innovative approaches in question analysis, summarization, and answer presentation. Five types of resources were indexed in this system: MEDLINE abstracts, PubMed Central full-text articles, eMedicine documents, clinical guidelines and Wikipedia articles.{\\textless}/AbstractText{\\textgreater}\n{\\textless}AbstractText Label=\"MEASUREMENT\" NlmCategory=\"METHODS\"{\\textgreater}We compared the AskHERMES system with Google (Google and Google Scholar) and UpToDate and asked physicians to score the three systems by ease of use, quality of answer, time spent, and overall performance.{\\textless}/AbstractText{\\textgreater}\n{\\textless}AbstractText Label=\"RESULTS\" NlmCategory=\"RESULTS\"{\\textgreater}AskHERMES allows physicians to enter a question in a natural way with minimal query formulation and allows physicians to efficiently navigate among all the answer sentences to quickly meet their information needs. In contrast, physicians need to formulate queries to search for information in Google and UpToDate. The development of the AskHERMES system is still at an early stage, and the knowledge resource is limited compared with Google or UpToDate. Nevertheless, the evaluation results show that AskHERMES' performance is comparable to the other systems. In particular, when answering complex clinical questions, it demonstrates the potential to outperform both Google and UpToDate systems.{\\textless}/AbstractText{\\textgreater}\n{\\textless}AbstractText Label=\"CONCLUSIONS\" NlmCategory=\"CONCLUSIONS\"{\\textgreater}AskHERMES, available at http://www.AskHERMES.org, has the potential to help physicians practice evidence-based medicine and improve the quality of patient care.{\\textless}/AbstractText{\\textgreater}},\n\tnumber = {2},\n\turldate = {2011-03-25},\n\tjournal = {Journal of Biomedical Informatics},\n\tauthor = {Cao, Yonggang and Liu, Feifan and Simpson, Pippa and Antieau, Lamont and Bennett, Andrew and Cimino, James J and Ely, John and Yu, Hong},\n\tmonth = apr,\n\tyear = {2011},\n\tpmid = {21256977 PMCID: PMC3433744},\n\tkeywords = {Algorithms, Clinical Medicine, Databases, Factual, Information Storage and Retrieval, Online Systems, Software, expert systems, natural language processing},\n\tpages = {277--288},\n}\n\n","author_short":["Cao, Y.","Liu, F.","Simpson, P.","Antieau, L.","Bennett, A.","Cimino, J. J","Ely, J.","Yu, H."],"key":"cao_askhermes_2011","id":"cao_askhermes_2011","bibbaseid":"cao-liu-simpson-antieau-bennett-cimino-ely-yu-askhermesanonlinequestionansweringsystemforcomplexclinicalquestions-2011","role":"author","urls":{"Paper":"http://www.ncbi.nlm.nih.gov/pubmed/21256977"},"keyword":["Algorithms","Clinical Medicine","Databases","Factual","Information Storage and Retrieval","Online Systems","Software","expert systems","natural language processing"],"metadata":{"authorlinks":{}},"html":""},"bibtype":"article","biburl":"http://fenway.cs.uml.edu/papers/pubs-all.bib","dataSources":["TqaA9miSB65nRfS5H"],"keywords":["algorithms","clinical medicine","databases","factual","information storage and retrieval","online systems","software","expert systems","natural language processing"],"search_terms":["askhermes","online","question","answering","system","complex","clinical","questions","cao","liu","simpson","antieau","bennett","cimino","ely","yu"],"title":"AskHERMES: An online question answering system for complex clinical questions","year":2011}