Reticular materials in sorbent-based extraction methods. Carrasco-Correa, E., Herrero-Martínez, J., Pacheco-Fernández, I., & Pino, V. Elsevier, 2021. cited By 1
Reticular materials in sorbent-based extraction methods [link]Paper  doi  abstract   bibtex   
Reticular materials form through strong bonding of various building blocks, leading to the formation of highly porous crystalline structures. Given the diversity of the available building units and the easily modification and functionalization of these materials, a huge variety of reticular materials can be obtained, which can be classified as metal-organic (MOFs) or covalent-organic (COFs) frameworks, depending on the nature of the building blocks. Apart from their impressive surface area and synthetic versatility, they also present adequate physicochemical and thermal stability, and can be easily synthesized together with other materials to prepare composites with attractive characteristics. All these properties make them potential candidates to prepare novel sorbents for analytical sample preparation strategies. This chapter summarizes the incorporation of MOFs, COFs, and their composites in different sorbent-based extraction methods, paying special attention to the evolution and recent advances in the field, together with their preparation and most relevant analytical applications. © 2021 Elsevier Inc. All rights reserved.
@BOOK{Carrasco-Correa2021323,
author={Carrasco-Correa, E.J. and Herrero-Martínez, J.M. and Pacheco-Fernández, I. and Pino, V.},
title={Reticular materials in sorbent-based extraction methods},
journal={Analytical Sample Preparation With Nano- and Other High-Performance Materials},
year={2021},
pages={323-376},
doi={10.1016/B978-0-12-822139-6.00009-2},
note={cited By 1},
url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123548329&doi=10.1016%2fB978-0-12-822139-6.00009-2&partnerID=40&md5=5683db01e123c54c20c82a6f5518b908},
affiliation={Department of Analytical Chemistry, University of Valencia, Valencia, Spain; Department of Chemistry, Analytical Chemistry Division, University of La Laguna, Tenerife, Spain; University Insitute of Tropical Diseases and Public Health, University of La Laguna, Canary Islands, Tenerife, Spain},
abstract={Reticular materials form through strong bonding of various building blocks, leading to the formation of highly porous crystalline structures. Given the diversity of the available building units and the easily modification and functionalization of these materials, a huge variety of reticular materials can be obtained, which can be classified as metal-organic (MOFs) or covalent-organic (COFs) frameworks, depending on the nature of the building blocks. Apart from their impressive surface area and synthetic versatility, they also present adequate physicochemical and thermal stability, and can be easily synthesized together with other materials to prepare composites with attractive characteristics. All these properties make them potential candidates to prepare novel sorbents for analytical sample preparation strategies. This chapter summarizes the incorporation of MOFs, COFs, and their composites in different sorbent-based extraction methods, paying special attention to the evolution and recent advances in the field, together with their preparation and most relevant analytical applications. © 2021 Elsevier Inc. All rights reserved.},
author_keywords={analytical sample preparation;  composite;  covalent-organic framework;  dispersive solid-phase extraction;  hybrid material;  metal-organic framework;  Reticular material;  solid-phase extraction;  solid-phase microextraction},
references={Yaghi, O.M., Reticular chemistry in all dimensions (2019) ACS Cent. Sci., 5, pp. 1295-1300. , https://doi.org/10.1021/acscentsci.9b00750; O’Keeffe, M., Peskov, M.A., Ramsden, S.J., Yaghi, O.M., The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets (2008) Acc. Chem. Res., 41, pp. 1782-1789. , https://doi.org/10.1021/ar800124u; Kalmutzki, M.J., Hanikel, N., Yaghi, O.M., Secondary building units as the turning point in the development of the reticular chemistry of MOFs (2018) Sci. Adv., 4 (10), p. aat9180. , https://doi.org/10.1126/sciadv.aat9180; Maciel, E.V.S., de Toffoli, A.L., Neto, E.S., Nazario, C.E.D., Lanças, F.M., New materials in sample preparation: recent advances and future trends (2019) TrAC.—Trends Anal. Chem., 119, p. 115633. , https://doi.org/10.1016/j.trac.2019.115633; https://www.ccdc.cam.ac.uk/structures, CCDC WebCSD FIZ Karlsruhe (n.d.). (accessed May 18, 2020); Pacheco-Fernández, I., González-Hernández, P., Pasán, J., Ayala, J.H., Pino, V., The rise of metal-organic frameworks in analytical chemistry (2019) Handb. Smart Mater. Anal. Chem., pp. 463-502. , https://doi.org/10.1002/9781119422587.ch15; Safaei, M., Foroughi, M.M., Ebrahimpoor, N., Jahani, S., Omidi, A., Khatami, M., A review on metal-organic frameworks: synthesis and applications (2019) TrAC.—Trends Anal. Chem., 118, pp. 401-425. , https://doi.org/10.1016/j.trac.2019.06.007; Furukawa, H., Cordova, K.E., O’Keeffe, M., Yaghi, O.M., The chemistry and applications of metal-organic frameworks (2013) Science, 341 (6149), p. 1230444. , https://doi.org/10.1126/science.1230444; Rocío-Bautista, P., González-Hernández, P., Pino, V., Pasán, J., Afonso, A.M., Metal-organic frameworks as novel sorbents in dispersive-based microextraction approaches (2017) TrAC.—Trends Anal. Chem., 90, pp. 114-134. , https://doi.org/10.1016/j.trac.2017.03.002; Gutiérrez-Serpa, A., Pacheco-Fernández, I., Pasán, J., Pino, V., Metal-organic frameworks as key materials for solid-phase microextraction devices—a review (2019) Separations, 6 (4), p. 47. , https://doi.org/10.3390/separations6040047; Geng, K., He, T., Liu, R., Dalapati, S., Tan, K.T., Li, Z., Covalent organic frameworks: design, synthesis, and functions (2020) Chem. Rev., , https://doi.org/10.1021/acs.chemrev.9b00550; Chen, L., Wu, Q., Gao, J., Li, H., Dong, S., Shi, X., Applications of covalent organic frameworks in analytical chemistry (2019) TrAC.—Trends Anal. Chem., 113, pp. 182-193. , https://doi.org/10.1016/j.trac.2019.01.016; Wang, Z., Zhang, S., Chen, Y., Zhang, Z., Ma, S., Covalent organic frameworks for separation applications (2020) Chem. Soc. Rev., 49, pp. 708-735. , https://doi.org/10.1039/c9cs00827f; Wang, J., Li, J., Gao, M., Zhang, X., Recent advances in covalent organic frameworks for separation and analysis of complex samples (2018) TrAC.—Trends Anal. Chem., 108, pp. 98-109. , https://doi.org/10.1016/j.trac.2018.07.013; Rocío-Bautista, P., Taima-Mancera, I., Pasán, J., Pino, V., Metal-organic frameworks in green analytical chemistry (2019) Separations, 6 (3), p. 33. , https://doi.org/10.3390/separations6030033; Peh, S.B., Wang, Y., Zhao, D., Scalable and sustainable synthesis of advanced porous materials (2019) ACS Sustain. Chem. Eng., 7, pp. 3647-3670. , https://doi.org/10.1021/acssuschemeng.8b05463; Kumar, P., Vellingiri, K., Kim, K.H., Brown, R.J.C., Manos, M.J., Modern progress in metal-organic frameworks and their composites for diverse applications (2017) Microporous Mesoporous Mater., 253, pp. 251-265. , https://doi.org/10.1016/j.micromeso.2017.07.003; Schmidt, B.V.K.J., Metal-organic frameworks in polymer science: polymerization catalysis, polymerization environment, and hybrid materials (2020) Macromol. Rapid Commun., 41, p. 1900333. , https://doi.org/10.1002/marc.201900333; Marshall, C.R., Staudhammer, S.A., Brozek, C.K., Size control over metal-organic framework porous nanocrystals (2019) Chem. Sci., 10, pp. 9396-9408. , https://doi.org/10.1039/c9sc03802g; Hu, Y., Song, C., Liao, J., Huang, Z., Li, G., Water stable metal-organic framework packed microcolumn for online sorptive extraction and direct analysis of naproxen and its metabolite from urine sample (2013) J. Chromatogr. A., 1294, pp. 17-24. , https://doi.org/10.1016/j.chroma.2013.04.034; Dai, X., Jia, X., Zhao, P., Wang, T., Wang, J., Huang, P., A combined experimental/computational study on metal-organic framework MIL-101(Cr) as a SPE sorbent for the determination of sulphonamides in environmental water samples coupling with UPLC-MS/MS (2016) Talanta, 154, pp. 581-588. , https://doi.org/10.1016/j.talanta.2016.03.042; Li, D., Zhang, X., Kong, F., Qiao, X., Xu, Z., Molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography for the determination of trace trichlorfon and monocrotophos residues in fruits (2017) Food Anal. Methods., 10, pp. 1284-1292. , https://doi.org/10.1007/s12161-016-0687-z; Ghiasvand, A.R., Ghaedrahmati, L., Heidari, N., Haddad, P.R., Farhadi, S., Synthesis and characterization of MIL-101(Cr) intercalated by polyaniline composite, doped with silica nanoparticles and its evaluation as an efficient solid-phase extraction sorbent (2018) J. Sep. Sci., 41, pp. 3910-3917. , https://doi.org/10.1002/jssc.201800498; Huang, Z., He, J., Li, Y., Wu, C., You, L., Wei, H., Preparation of dummy molecularly imprinted polymers for extraction of Zearalenone in grain samples (2019) J. Chromatogr. A., 1602, pp. 11-18. , https://doi.org/10.1016/j.chroma.2019.05.022; Amini, S., Ebrahimzadeh, H., Seidi, S., Jalilian, N., Polyacrylonitrile/MIL-53(Fe) electrospun nanofiber for pipette-tip micro solid phase extraction of nitrazepam and oxazepam followed by HPLC analysis (2020) Microchim. Acta., 187, p. 152. , https://doi.org/10.1007/s00604-020-4112-3; Firoozichahak, A., Bahrami, A., Ghorbani Shahna, F., Alizadeh, S., Nematollahi, D., Farhadian, M., Development of a needle trap device packed with titanium-based metal-organic framework sorbent for extraction of phenolic derivatives in air (2020) J. Sep. Sci., 43, pp. 1011-1018. , https://doi.org/10.1002/jssc.201900938; Pirmohammadi, Z., Bahrami, A., Nematollahi, D., Alizadeh, S., Ghorbani Shahna, F., Rahimpoor, R., Determination of urinary methylhippuric acids using MIL-53-NH2 (Al) metal-organic framework in microextraction by packed sorbent followed by HPLC-UV analysis (2020) Biomed. Chromatogr., 34, p. 4725. , https://doi.org/10.1002/bmc.4725; Giesbers, M., Carrasco-Correa, E.J., Simó-Alfonso, E.F., Herrero-Martínez, J.M., Hybrid monoliths with metal-organic frameworks in spin columns for extraction of non-steroidal drugs prior to their quantitation by reversed-phase HPLC (2019) Microchim. Acta., 186, p. 759. , https://doi.org/10.1007/s00604-019-3923-6; Yang, X.Q., Yang, C.X., Yan, X.P., Zeolite imidazolate framework-8 as sorbent for on-line solid-phase extraction coupled with high-performance liquid chromatography for the determination of tetracyclines in water and milk samples (2013) J. Chromatogr. A., 1304, pp. 28-33. , https://doi.org/10.1016/j.chroma.2013.06.064; Asiabi, M., Mehdinia, A., Jabbari, A., Preparation of water stable methyl-modified metal-organic framework-5/polyacrylonitrile composite nanofibers via electrospinning and their application for solid-phase extraction of two estrogenic drugs in urine samples (2015) J. Chromatogr. A., 1426, pp. 24-32. , https://doi.org/10.1016/j.chroma.2015.11.036; Rahimpoor, R., Bahrami, A., Nematollahi, D., Shahna, F.G., Farhadian, M., Facile and sensitive determination of urinary mandelic acid by combination of metal organic frameworks with microextraction by packed sorbents (2019) J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 1114-1115, pp. 45-54. , https://doi.org/10.1016/j.jchromb.2019.03.023; Liang, Y., He, J., Huang, Z., Li, H., Zhang, Y., Wang, H., An amino-functionalized zirconium-based metal-organic framework of type UiO-66-NH2 covered with a molecularly imprinted polymer as a sorbent for the extraction of aflatoxins AFB1, AFB2, AFG1 and AFG2 from grain (2020) Microchim. Acta., 187, p. 32. , https://doi.org/10.1007/s00604-019-3959-7; Sun, Z., Liu, H., Zhou, Y., Zhao, S., Li, J., Wang, X., A restricted access molecularly imprinted polymer coating on metal-organic frameworks for solid-phase extraction of ofloxacin and enrofloxacin from bovine serum (2019) RSC Adv., 9, pp. 27953-27960. , https://doi.org/10.1039/c9ra04143e; Yan, Z., Wu, M., Hu, B., Yao, M., Zhang, L., Lu, Q., Electrospun UiO-66/polyacrylonitrile nanofibers as efficient sorbent for pipette tip solid phase extraction of phytohormones in vegetable samples (2018) J. Chromatogr. A., 1542, pp. 19-27. , https://doi.org/10.1016/j.chroma.2018.02.030; Bao, T., Su, Y., Zhang, N., Gao, Y., Wang, S., Hydrophilic carboxyl cotton for in situ growth of UiO-66 and its application as adsorbents (2019) Ind. Eng. Chem. Res., 58, pp. 20331-20339. , https://doi.org/10.1021/acs.iecr.9b05172; Duo, H., Wang, Y., Wang, L., Lu, X., Liang, X., Zirconium(IV)-based metal-organic frameworks (UiO-67) as solid-phase extraction adsorbents for extraction of phenoxyacetic acid herbicides from vegetables (2018) J. Sep. Sci., 41, pp. 4149-4158. , https://doi.org/10.1002/jssc.201800784; Pang, X., Liu, H., Yu, H., Zhang, M., Bai, L., Yan, H., A metal organic framework polymer monolithic column as a novel adsorbent for on-line solid phase extraction and determination of ursolic acid in Chinese herbal medicine (2019) J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 1125, p. 121715. , https://doi.org/10.1016/j.jchromb.2019.121715; Martínez-Pérez-Cejuela, H., Guiñez, M., Simó-Alfonso, E.F., Amorós, P., El Haskouri, J., Herrero-Martínez, J.M., In situ growth of metal-organic framework HKUST-1 in an organic polymer as sorbent for nitrated and oxygenated polycyclic aromatic hydrocarbon in environmental water samples prior to quantitation by HPLC-UV (2020) Microchim. Acta., 187, p. 301. , https://doi.org/10.1007/s00604-020-04265-z; Yang, J., Dong, X., Zhen, X., Chen, Y., Wang, Y., Wang, Q., Metal organic framework assisted in situ complexation for miniaturized solid phase extraction of organic mercury in fish and Dendrobium officinale (2020) Talanta, 209, p. 120598. , https://doi.org/10.1016/j.talanta.2019.120598; Rezaei Kahkha, M.R., Daliran, S., Oveisi, A.R., Kaykhaii, M., Sepehri, Z., The mesoporous porphyrinic zirconium metal-organic framework for pipette-tip solid-phase extraction of mercury from fish samples followed by cold vapor atomic absorption spectrometric determination (2017) Food Anal. Methods., 10, pp. 2175-2184. , https://doi.org/10.1007/s12161-016-0786-x; Rezaei Kahkha, M.R., Kaykhaii, M., Sargazi, G., Kahkha, B.R., Determination of nicotine in saliva, urine and wastewater samples using tantalum metal organic framework pipette tip micro-solid phase extraction (2019) Anal. Methods., 11, pp. 6168-6175. , https://doi.org/10.1039/c9ay01773a; Esrafili, A., Ghambarian, M., Tajik, M., Baharfar, M., Spin-column micro-solid phase extraction of chlorophenols using MFU-4l metal-organic framework (2020) Microchim. Acta., 187, p. 39. , https://doi.org/10.1007/s00604-019-4023-3; Pérez-Cejuela, H.M., Mon, M., Ferrando-Soria, J., Pardo, E., Armentano, D., Simó-Alfonso, E.F., Bio-metal-organic frameworks for molecular recognition and sorbent extraction of hydrophilic vitamins followed by their determination using HPLC-UV (2020) Microchim. Acta., 187, p. 201. , https://doi.org/10.1007/s00604-020-4185-z; Liu, J.M., Wang, X.Z., Zhao, C.Y., Hao, J.L., Fang, G.Z., Wang, S., Fabrication of porous covalent organic frameworks as selective and advanced adsorbents for the on-line preconcentration of trace elements against the complex sample matrix (2018) J. Hazard. Mater., 344, pp. 220-229. , https://doi.org/10.1016/j.jhazmat.2017.10.013; Xu, G., Zhang, B., Wang, X., Li, N., Zhao, Y., Liu, L., Porous covalent organonitridic frameworks for solid-phase extraction of sulfonamide antibiotics (2019) Microchim. Acta., 186, p. 26. , https://doi.org/10.1007/s00604-018-3152-4; Liu, J.M., Hao, J.L., Yuan, X.Y., Liu, H.L., Fang, G.Z., Wang, S., Spherical covalent organic frameworks as advanced adsorbents for preconcentration and separation of phenolic endocrine disruptors, followed by high performance liquid chromatography (2018) RSC Adv., 8, pp. 26880-26887. , https://doi.org/10.1039/c8ra04321c; Li, W., Huang, L., Guo, D., Zhao, Y., Zhu, Y., Self-assembling covalent organic framework functionalized poly (styrene-divinyl benzene-glycidylmethacrylate) composite for the rapid extraction of non-steroidal anti-inflammatory drugs in wastewater (2018) J. Chromatogr. A., 1571, pp. 76-83. , https://doi.org/10.1016/j.chroma.2018.08.019; Chen, Z., Yu, C., Xi, J., Tang, S., Bao, T., Zhang, J., A hybrid material prepared by controlled growth of a covalent organic framework on amino-modified MIL-68 for pipette tip solid-phase extraction of sulfonamides prior to their determination by HPLC (2019) Microchim. Acta., 186, p. 393. , https://doi.org/10.1007/s00604-019-3513-7; Li, N., Wang, Z., Zhang, L., Nian, L., Lei, L., Yang, X., Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction of herbicides in peanuts (2014) Talanta, 128, pp. 345-353. , https://doi.org/10.1016/j.talanta.2014.04.084; Ge, D., Lee, H.K., Water stability of zeolite imidazolate framework 8 and application to porous membrane-protected micro-solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples (2011) J. Chromatogr. A., 1218, pp. 8490-8495. , https://doi.org/10.1016/j.chroma.2011.09.077; Zhai, Y., Li, N., Lei, L., Yang, X., Zhang, H., Dispersive micro-solid-phase extraction of hormones in liquid cosmetics with metal-organic framework (2014) Anal. Methods., 6, pp. 9435-9445. , https://doi.org/10.1039/c4ay01763c; Li, N., Wu, L., Nian, L., Song, Y., Lei, L., Yang, X., Dynamic microwave assisted extraction coupled with dispersive micro-solid-phase extraction of herbicides in soybeans (2015) Talanta, 142, pp. 43-50. , https://doi.org/10.1016/j.talanta.2015.04.038; Huang, Z., Lee, H.K., Performance of metal-organic framework MIL-101 after surfactant modification in the extraction of endocrine disrupting chemicals from environmental water samples (2015) Talanta, 143, pp. 366-373. , https://doi.org/10.1016/j.talanta.2015.05.006; Lu, N., Wang, T., Zhao, P., Zhang, L., Lun, X., Zhang, X., Experimental and molecular docking investigation on metal-organic framework MIL-101(Cr) as a sorbent for vortex assisted dispersive micro-solid-phase extraction of trace 5-nitroimidazole residues in environmental water samples prior to UPLC-MS/MS analysis (2016) Anal. Bioanal. Chem., 408, pp. 8515-8528. , https://doi.org/10.1007/s00216-016-9977-y; Qi, C., Cai, Q., Zhao, P., Jia, X., Lu, N., He, L., The metal-organic framework MIL-101(Cr) as efficient adsorbent in a vortex-assisted dispersive solid-phase extraction of imatinib mesylate in rat plasma coupled with ultra-performance liquid chromatography/mass spectrometry: application to a pharmacokinetic study (2016) J. Chromatogr. A., 1449, pp. 30-38. , https://doi.org/10.1016/j.chroma.2016.04.055; Cai, Q., Zhang, L., Zhao, P., Lun, X., Li, W., Guo, Y., A joint experimental-computational investigation: metal organic framework as a vortex assisted dispersive micro-solid-phase extraction sorbent coupled with UPLC-MS/MS for the simultaneous determination of amphenicols and their metabolite in aquaculture water (2017) Microchem. J., 130, pp. 263-270. , https://doi.org/10.1016/j.microc.2016.09.014; Cai, Q., Zhao, T., Zhang, L., Zhao, P., Zhu, Y., Xu, H., A new strategy for extraction and depuration of pantoprazole in rat plasma: vortex assisted dispersive micro-solid-phase extraction employing metal organic framework MIL-101(Cr) as sorbent followed by dispersive liquid-liquid microextraction based on solidification of a floating organic droplet (2019) J. Pharm. Biomed. Anal., 172, pp. 86-93. , https://doi.org/10.1016/j.jpba.2019.04.016; Rocío-Bautista, P., Pino, V., Pasán, J., López-Hernández, I., Ayala, J.H., Ruiz-Pérez, C., Insights in the analytical performance of neat metal-organic frameworks in the determination of pollutants of different nature from waters using dispersive miniaturized solid-phase extraction and liquid chromatography (2018) Talanta, 179, pp. 775-783. , https://doi.org/10.1016/j.talanta.2017.12.012; Yohannes, A., Yao, S., Preconcentration of tropane alkaloids by a metal organic framework (MOF)-immobilized ionic liquid with the same nucleus for their quantitation in Huashanshen tablets (2019) Analyst, 144, pp. 6989-7000. , https://doi.org/10.1039/c9an01362h; Wang, Y., Dai, X., He, X., Chen, L., Hou, X., MIL-101(Cr)@GO for dispersive micro-solid-phase extraction of pharmaceutical residue in chicken breast used in microwave-assisted coupling with HPLC-MS/MS detection (2017) J. Pharm. Biomed. Anal., 145, pp. 440-446. , https://doi.org/10.1016/j.jpba.2017.07.010; Jia, Y., Zhao, Y., Zhao, M., Wang, Z., Chen, X., Wang, M., Core-shell indium (III) sulfide@metal-organic framework nanocomposite as an adsorbent for the dispersive solid-phase extraction of nitro-polycyclic aromatic hydrocarbons (2018) J. Chromatogr. A., 1551, pp. 21-28. , https://doi.org/10.1016/j.chroma.2018.04.005; Tan, S.C., Lee, H.K., A metal-organic framework of type MIL-101(Cr) for emulsification-assisted micro-solid-phase extraction prior to UHPLC-MS/MS analysis of polar estrogens (2019) Microchim. Acta., 186, p. 165. , https://doi.org/10.1007/s00604-019-3289-9; Hu, H., Liu, S., Chen, C., Wang, J., Zou, Y., Lin, L., Two novel zeolitic imidazolate frameworks (ZIFs) as sorbents for solid-phase extraction (SPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples (2014) Analyst, 139, pp. 5818-5826. , https://doi.org/10.1039/c4an01410c; Amiri, A., Tayebee, R., Abdar, A., Narenji Sani, F., Synthesis of a zinc-based metal-organic framework with histamine as an organic linker for the dispersive solid-phase extraction of organophosphorus pesticides in water and fruit juice samples (2019) J. Chromatogr. A., 1597, pp. 39-45. , https://doi.org/10.1016/j.chroma.2019.03.039; Wang, X., Ma, X., Wang, H., Huang, P., Du, X., Lu, X., A zinc(II) benzenetricarboxylate metal organic framework with unusual adsorption properties, and its application to the preconcentration of pesticides (2017) Microchim. Acta., 184, pp. 3681-3687. , https://doi.org/10.1007/s00604-017-2382-1; Qiang, Y., Wang, W.F., Dhodary, B., Yang, J.L., Zeolitic imidazolate framework 8 (ZIF-8) reinforced macroporous resin D101 for selective solid-phase extraction of 1-naphthol and 2-naphthol from phenol compounds (2017) Electrophoresis, 38, pp. 1685-1692. , https://doi.org/10.1002/elps.201600569; Qu, F., Xia, L., Wu, C., Liu, L., Li, G., You, J., Sensitive and accurate determination of sialic acids in serum with the aid of dispersive solid-phase extraction using the zirconium-based MOF of UiO-66-NH2 as sorbent (2016) RSC Adv., 6, pp. 64895-64901. , https://doi.org/10.1039/c6ra11633g; Liu, L., Xia, L., Wu, C., Qu, F., Li, G., Sun, Z., Zirconium (IV)-based metal organic framework (UIO-67) as efficient sorbent in dispersive solid phase extraction of plant growth regulator from fruits coupled with HPLC fluorescence detection (2016) Talanta, 154, pp. 23-30. , https://doi.org/10.1016/j.talanta.2016.03.038; Taima-Mancera, I., Rocío-Bautista, P., Pasán, J., Ayala, J.H., Ruiz-Pérez, C., Afonso, A.M., Influence of ligand functionalization of UiO-66-based metal-organic frameworks when used as sorbents in dispersive solid-phase analytical microextraction for different aqueous organic pollutants (2018) Molecules, 23 (11), p. 2869. , https://doi.org/10.3390/molecules23112869; González-Rodríguez, G., Taima-Mancera, I., Lago, A.B., Ayala, J.H., Pasán, J., Pino, V., Mixed functionalization of organic ligands in UiO-66: a tool to design metal-organic frameworks for tailored microextraction (2019) Molecules, 24 (20), p. 3656. , https://doi.org/10.3390/molecules24203656; Xia, L., Dou, Y., Gao, J., Gao, Y., Fan, W., Li, G., Adsorption behavior of a metal organic framework of University in Oslo 67 and its application to the extraction of sulfonamides in meat samples (2020) J. Chromatogr. A., 1619, p. 460949. , https://doi.org/10.1016/j.chroma.2020.460949; Hu, Z., Wang, X., Wang, J., Chen, X., PEGylation of metal-organic framework for selective isolation of glycoprotein immunoglobulin G (2020) Talanta, 208, p. 120433. , https://doi.org/10.1016/j.talanta.2019.120433; Mohammadnejad, M., Gudarzi, Z., Geranmayeh, S., Mahdavi, V., HKUST-1 metal-organic framework for dispersive solid phase extraction of 2-methyl-4-chlorophenoxyacetic acid (MCPA) prior to its determination by ion mobility spectrometry (2018) Microchim. Acta., 185, p. 495. , https://doi.org/10.1007/s00604-018-3014-0; Rocío-Bautista, P., Martínez-Benito, C., Pino, V., Pasán, J., Ayala, J.H., Ruiz-Pérez, C., The metal-organic framework HKUST-1 as efficient sorbent in a vortex-assisted dispersive micro solid-phase extraction of parabens from environmental waters, cosmetic creams, and human urine (2015) Talanta, 139, pp. 13-20. , https://doi.org/10.1016/j.talanta.2015.02.032; Wang, Y., Wu, Y., Ge, H., Chen, H., Ye, G., Hu, X., Fabrication of metal-organic frameworks and graphite oxide hybrid composites for solid-phase extraction and preconcentration of luteolin (2014) Talanta, 122, pp. 91-96. , https://doi.org/10.1016/j.talanta.2014.01.049; Arabsorkhi, B., Sereshti, H., Abbasi, A., Electrospun metal-organic framework/polyacrylonitrile composite nanofibrous mat as a microsorbent for the extraction of tetracycline residue in human blood plasma (2019) J. Sep. Sci., 42, pp. 1500-1508. , https://doi.org/10.1002/jssc.201801305; Tahmasebi, E., Masoomi, M.Y., Yamini, Y., Morsali, A., Application of mechanosynthesized azine-decorated zinc(II) metal-organic frameworks for highly efficient removal and extraction of some heavy-metal ions from aqueous samples: a comparative study (2015) Inorg. Chem., 54, pp. 425-433. , https://doi.org/10.1021/ic5015384; Li, Y., Zhu, N., Chen, T., Ma, Y., Li, Q., A green cyclodextrin metal-organic framework as solid-phase extraction medium for enrichment of sulfonamides before their HPLC determination (2018) Microchem. J., 138, pp. 401-407. , https://doi.org/10.1016/j.microc.2018.01.038; Rocío-Bautista, P., Pino, V., Ayala, J.H., Ruiz-Pérez, C., Vallcorba, O., Afonso, A.M., A green metal-organic framework to monitor water contaminants (2018) RSC Adv., 8, pp. 31304-31310. , https://doi.org/10.1039/c8ra05862h; Gutiérrez-Serpa, A., Jiménez-Abizanda, A.I., Jiménez-Moreno, F., Pasán, J., Pino, V., Core-shell microparticles formed by the metal-organic framework CIM-80(Al) (Silica@CIM-80(Al)) as sorbent material in miniaturized dispersive solid-phase extraction (2020) Talanta, 211, p. 120723. , https://doi.org/10.1016/j.talanta.2020.120723; Li, S., Si, H., Li, J., Jia, M., Hou, X., Metal organic framework/chitosan foams functionalized with polyethylene oxide as a sorbent for enrichment and analysis of bisphenols in beverages and water (2020) N. J. Chem., 44, pp. 1485-1492. , https://doi.org/10.1039/c9nj05196a; Huang, Z., Lee, H.K., Micro-solid-phase extraction of organochlorine pesticides using porous metal-organic framework MIL-101 as sorbent (2015) J. Chromatogr. A., 1401, pp. 9-16. , https://doi.org/10.1016/j.chroma.2015.04.052; Wang, Y., Zhang, Y., Cui, J., Li, S., Yuan, M., Wang, T., Fabrication and characterization of metal organic frameworks/ polyvinyl alcohol cryogel and their application in extraction of non-steroidal anti-inflammatory drugs in water samples (2018) Anal. Chim. Acta., 1022, pp. 45-52. , https://doi.org/10.1016/j.ac.2018.03.056; Gao, G., Xing, Y., Liu, T., Wang, J., Hou, X., UiO-66(Zr) as sorbent for porous membrane protected micro-solid-phase extraction androgens and progestogens in environmental water samples coupled with LC-MS/MS analysis: the application of experimental and molecular simulation method (2019) Microchem. J., 146, pp. 126-133. , https://doi.org/10.1016/j.microc.2018.12.050; Zhang, X., Qing, G., Yu, L., Kang, H., Chen, C., Li, X., Novel nanoporous covalent organic frameworks for the selective extraction of endogenous peptides (2018) RSC Adv., 8, pp. 37528-37533. , https://doi.org/10.1039/C8RA07500J; Li, W., Chen, N., Zhu, Y., Shou, D., Zhi, M., Zeng, X., A nanocomposite consisting of an amorphous seed and a molecularly imprinted covalent organic framework shell for extraction and HPLC determination of nonsteroidal anti-inflammatory drugs (2019) Microchim. Acta., 186, p. 76. , https://doi.org/10.1007/s00604-018-3187-6; Ma, J.B., Wu, H.W., Liao, Y.F., Rui, Q.H., Zhu, Y., Zhang, Y., Application of petal-shaped ionic liquids modified covalent organic frameworks for one step cleanup and extraction of general anesthetics in human plasma samples (2020) Talanta, 210, p. 120652. , https://doi.org/10.1016/j.talanta.2019.120652; Ge, K., Peng, Y., Lu, Z., Hu, Y., Li, G., Aptamer-gold nanoparticle doped covalent organic framework followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for selective enrichment and detection of human insulin (2020) J. Chromatogr. A., 1615, p. 460741. , https://doi.org/10.1016/j.chroma.2019.460741; Ding, M., Cai, X., Jiang, H.L., Improving MOF stability: approaches and applications (2019) Chem. Sci., 10, pp. 10209-10230. , https://doi.org/10.1039/c9sc03916c; Zhai, Q.G., Bu, X., Zhao, X., Li, D.S., Feng, P., Pore space partition in metal-organic frameworks (2017) Acc. Chem. Res., 50, pp. 407-417. , https://doi.org/10.1021/acs.accounts.6b00526; Lirio, S., Shih, Y.H., Hsiao, S.Y., Chen, J.H., Chen, H.T., Liu, W.L., Monitoring the effect of different metal centers in metal-organic frameworks and their adsorption of aromatic molecules using experimental and simulation studies (2018) Chem.—A Eur. J., 24, pp. 14044-14047. , https://doi.org/10.1002/chem.201802343; Boontongto, T., Siriwong, K., Burakham, R., Amine-functionalized metal-organic framework as a new sorbent for vortex-assisted dispersive micro-solid phase extraction of phenol residues in water samples prior to HPLC analysis: experimental and computational studies (2018) Chromatographia., 81, pp. 735-747. , https://doi.org/10.1007/s10337-018-3498-0; Maya, F., Palomino Cabello, C., Estela, J.M., Cerdà, V., Turnes Palomino, G., Automatic in-syringe dispersive microsolid phase extraction using magnetic metal-organic frameworks (2015) Anal. Chem., 87, pp. 7545-7549. , https://doi.org/10.1021/acs.analchem.5b01993; Huo, S.H., Yan, X.P., Facile magnetization of metal-organic framework MIL-101 for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples (2012) Analyst, 137, pp. 3445-3451. , https://doi.org/10.1039/c2an35429b; Dargahi, R., Ebrahimzadeh, H., Asgharinezhad, A.A., Hashemzadeh, A., Amini, M.M., Dispersive magnetic solid-phase extraction of phthalate esters from water samples and human plasma based on a nanosorbent composed of MIL-101(Cr) metal-organic framework and magnetite nanoparticles before their determination by GC-MS (2018) J. Sep. Sci., 41, pp. 948-957. , https://doi.org/10.1002/jssc.201700700; Liang, L., Wang, X., Sun, Y., Ma, P., Li, X., Piao, H., Magnetic solid-phase extraction of triazine herbicides from rice using metal-organic framework MIL-101(Cr) functionalized magnetic particles (2018) Talanta, 179, pp. 512-519. , https://doi.org/10.1016/j.talanta.2017.11.017; Zhang, S., Jiao, Z., Yao, W., A simple solvothermal process for fabrication of a metal-organic framework with an iron oxide enclosure for the determination of organophosphorus pesticides in biological samples (2014) J. Chromatogr. A., 1371, pp. 74-81. , https://doi.org/10.1016/j.chroma.2014.10.088; Li, Z., Qi, M., Tu, C., Wang, W., Chen, J., Wang, A.J., Magnetic metal-organic framework/graphene oxide-based solid-phase extraction combined with spectrofluorimetry for the determination of enrofloxacin in milk sample (2017) Food Anal. Methods., 10, pp. 4094-4103. , https://doi.org/10.1007/s12161-017-0971-6; Zhang, R., Wang, Z., Wang, T., Su, P., Yang, Y., Boronic acid-decorated metal-organic frameworks modified via a mixed-ligand strategy for the selective enrichment of cis-diol containing nucleosides (2020) Anal. Chim. Acta., 1106, pp. 42-51. , https://doi.org/10.1016/j.ac.2020.01.048; Miralles, P., van Gemert, I., Chisvert, A., Salvador, A., Stir bar sorptive-dispersive microextraction mediated by magnetic nanoparticles-metal organic framework composite: determination of N-nitrosamines in cosmetic products (2019) J. Chromatogr. A., 1604, p. 460465. , https://doi.org/10.1016/j.chroma.2019.460465; Zhang, Q., Yang, Y., Zhi, Y., Wang, X., Wu, Y., Zheng, Y., Aptamer-modified magnetic metal-organic framework MIL-101 for highly efficient and selective enrichment of ochratoxin A (2019) J. Sep. Sci., 42, pp. 716-724. , https://doi.org/10.1002/jssc.201800840; Zhang, S., Yao, W., Ying, J., Zhao, H., Polydopamine-reinforced magnetization of zeolitic imidazolate framework ZIF-7 for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from the air-water environment (2016) J. Chromatogr. A., 1452, pp. 18-26. , https://doi.org/10.1016/j.chroma.2016.05.039; kui Li, W., xia Zhang, H., ping Shi, Y., Selective determination of aromatic amino acids by magnetic hydroxylated MWCNTs and MOFs based composite (2017) J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 1059, pp. 27-34. , https://doi.org/10.1016/j.jchromb.2017.05.025; Jiang, J., Li, J., Zhu, J., Yu, Y., Duan, G., Zhou, L., Synthesis of sandwich-structured magnetic graphene-Zn-MOFs composites for quantitative determination of acarbose in rat plasma (2020) Talanta, 209, p. 120514. , https://doi.org/10.1016/j.talanta.2019.120514; Wang, G.H., Lei, Y.Q., Song, H.C., Evaluation of Fe3O4@SiO2-MOF-177 as an advantageous adsorbent for magnetic solid-phase extraction of phenols in environmental water samples (2014) Anal. Methods., 6, pp. 7842-7847. , https://doi.org/10.1039/c4ay00822g; Lin, S., Gan, N., Cao, Y., Chen, Y., Jiang, Q., Selective dispersive solid phase extraction-chromatography tandem mass spectrometry based on aptamer-functionalized UiO-66-NH2 for determination of polychlorinated biphenyls (2016) J. Chromatogr. A., 1446, pp. 34-40. , https://doi.org/10.1016/j.chroma.2016.04.016; Taghizadeh, M., Asgharinezhad, A.A., Pooladi, M., Barzin, M., Abbaszadeh, A., Tadjarodi, A., A novel magnetic metal organic framework nanocomposite for extraction and preconcentration of heavy metal ions, and its optimization via experimental design methodology (2013) Microchim. Acta., 180, pp. 1073-1084. , https://doi.org/10.1007/s00604-013-1010-y; Xu, Y., Jin, J., Li, X., Han, Y., Meng, H., Song, C., Magnetization of a Cu(II)-1,3,5-benzenetricarboxylate metal-organic framework for efficient solid-phase extraction of Congo Red (2015) Microchim. Acta., 182, pp. 2313-2320. , https://doi.org/10.1007/s00604-015-1572-y; Hassanpour, A., Hosseinzadeh-Khanmiri, R., Babazadeh, M., Abolhasani, J., Ghorbani-Kalhor, E., Determination of heavy metal ions in vegetable samples using a magnetic metal-organic framework nanocomposite sorbent (2015) Food Addit. Contam.—Part. A Chem. Anal. Control. Expo. Risk Assess., 32, pp. 725-736. , https://doi.org/10.1080/19440049.2015.1007397; Rocío-Bautista, P., Pino, V., Ayala, J.H., Pasán, J., Ruiz-Pérez, C., Afonso, A.M., A magnetic-based dispersive micro-solid-phase extraction method using the metal-organic framework HKUST-and ultra-high-performance liquid chromatography with fluorescence detection for determining polycyclic aromatic hydrocarbons in waters and fruit tea infusions (2016) J. Chromatogr. A., 1436, pp. 42-50. , https://doi.org/10.1016/j.chroma.2016.01.067; Ma, X., Zhou, X., Yu, A., Zhao, W., Zhang, W., Zhang, S., Functionalized metal-organic framework nanocomposites for dispersive solid phase extraction and enantioselective capture of chiral drug intermediates (2018) J. Chromatogr. A., 1537, pp. 1-9. , https://doi.org/10.1016/j.chroma.2017.12.067; Chen, X., Ding, N., Zang, H., Yeung, H., Zhao, R.S., Cheng, C., Fe3O4@MOF core-shell magnetic microspheres for magnetic solid-phase extraction of polychlorinated biphenyls from environmental water samples (2013) J. Chromatogr. A., 1304, pp. 241-245. , https://doi.org/10.1016/j.chroma.2013.06.053; Deng, Y., Zhang, R., Li, D., Sun, P., Su, P., Yang, Y., Preparation of iron-based MIL-101 functionalized polydopamine@Fe3O4 magnetic composites for extracting sulfonylurea herbicides from environmental water and vegetable samples (2018) J. Sep. Sci., 41, pp. 2046-2055. , https://doi.org/10.1002/jssc.201701391; Lian, L., Zhang, X., Hao, J., Lv, J., Wang, X., Zhu, B., Magnetic solid-phase extraction of fluoroquinolones from water samples using titanium-based metal-organic framework functionalized magnetic microspheres (2018) J. Chromatogr. A., 1579, pp. 1-8. , https://doi.org/10.1016/j.chroma.2018.10.019; Liu, S., Li, S., Yang, W., Gu, F., Xu, H., Wang, T., Magnetic nanoparticle of metal-organic framework with core-shell structure as an adsorbent for magnetic solid phase extraction of non-steroidal anti-inflammatory drugs (2019) Talanta, 194, pp. 514-521. , https://doi.org/10.1016/j.talanta.2018.10.037; Jalilian, N., Ebrahimzadeh, H., Asgharinezhad, A.A., A nanosized magnetic metal-organic framework of type MIL-53(Fe) as an efficient sorbent for coextraction of phenols and anilines prior to their quantitation by HPLC (2019) Microchim. Acta., 186, p. 597. , https://doi.org/10.1007/s00604-019-3698-9; Su, H., Lin, Y., Wang, Z., Wong, Y.L.E., Chen, X., Chan, T.W.D., Magnetic metal-organic framework-titanium dioxide nanocomposite as adsorbent in the magnetic solid-phase extraction of fungicides from environmental water samples (2016) J. Chromatogr. A., 1466, pp. 21-28. , https://doi.org/10.1016/j.chroma.2016.08.066; Liu, H., Chen, L., Ding, J., A core-shell magnetic metal organic framework of type Fe3O4@ZIF-8 for the extraction of tetracycline antibiotics from water samples followed by ultra-HPLC-MS analysis (2017) Microchim. Acta., 184, pp. 4091-4098. , https://doi.org/10.1007/s00604-017-2442-6; Zhao, M., Xie, Y., Chen, H., Deng, C., Efficient extraction of low-abundance peptides from digested proteins and simultaneous exclusion of large-sized proteins with novel hydrophilic magnetic zeolitic imidazolate frameworks (2017) Talanta, 167, pp. 392-397. , https://doi.org/10.1016/j.talanta.2017.02.038; Huang, X., Liu, Y., Liu, H., Liu, G., Xu, X., Li, L., Magnetic solid-phase extraction of pyrethroid insecticides from tea infusions using ionic liquid-modified magnetic zeolitic imidazolate framework-8 as an adsorbent (2019) RSC Adv, 9, pp. 39272-39281. , https://doi.org/10.1039/c9ra07617d; Zhou, Q., Lei, M., Li, J., Liu, Y., Zhao, K., Zhao, D., Magnetic solid phase extraction of N- and S-containing polycyclic aromatic hydrocarbons at ppb levels by using a zerovalent iron nanoscale material modified with a metal organic framework of type Fe@MOF-5, and their determination by HPLC (2017) Microchim. Acta., 184, pp. 1029-1036. , https://doi.org/10.1007/s00604-017-2094-6; Zhang, W., Yan, Z., Gao, J., Tong, P., Liu, W., Zhang, L., Metal-organic framework UiO-66 modified magnetite@silica core-shell magnetic microspheres for magnetic solid-phase extraction of domoic acid from shellfish samples (2015) J. Chromatogr. A., 1400, pp. 10-18. , https://doi.org/10.1016/j.chroma.2015.04.061; Wang, X., Deng, C., Preparation of magnetic graphene@polydopamine@Zr-MOF material for the extraction and analysis of bisphenols in water samples (2015) Talanta, 144, pp. 1329-1335. , https://doi.org/10.1016/j.talanta.2015.08.014; Jia, Y., Su, H., Wong, Y.L.E., Chen, X., Dominic Chan, T.W., Thermo-responsive polymer tethered metal-organic framework core-shell magnetic microspheres for magnetic solid-phase extraction of alkylphenols from environmental water samples (2016) J. Chromatogr. A., 1456, pp. 42-48. , https://doi.org/10.1016/j.chroma.2016.06.004; Xie, Y., Deng, C., Li, Y., Designed synthesis of ultra-hydrophilic sulfo-functionalized metal-organic frameworks with a magnetic core for highly efficient enrichment of the N-linked glycopeptides (2017) J. Chromatogr. A., 1508, pp. 1-6. , https://doi.org/10.1016/j.chroma.2017.05.055; Jin, R., Ji, F., Lin, H., Luo, C., Hu, Y., Deng, C., The synthesis of Zr-metal-organic framework functionalized magnetic graphene nanocomposites as an adsorbent for fast determination of multi-pesticide residues in tobacco samples (2018) J. Chromatogr. A., 1577, pp. 1-7. , https://doi.org/10.1016/j.chroma.2018.09.041; Li, C.Y., Liu, J.M., Wang, Z.H., Lv, S.W., Zhao, N., Wang, S., Integration of Fe3O4@UiO-66-NH2@MON core-shell structured adsorbents for specific preconcentration and sensitive determination of aflatoxins against complex sample matrix (2020) J. Hazard. Mater., 384, p. 121348. , https://doi.org/10.1016/j.jhazmat.2019.121348; Meng, J., Wang, Y., Zhou, Y., Chen, J., Wei, X., Ni, R., A composite consisting of a deep eutectic solvent and dispersed magnetic metal-organic framework (type UiO-66-NH2) for solid-phase extraction of RNA (2020) Microchim. Acta., 187, p. 58. , https://doi.org/10.1007/s00604-019-4040-2; Xia, L., Liu, L., Lv, X., Qu, F., Li, G., You, J., Towards the determination of sulfonamides in meat samples: A magnetic and mesoporous metal-organic framework as an efficient sorbent for magnetic solid phase extraction combined with high-performance liquid chromatography (2017) J. Chromatogr. A., 1500, pp. 24-31. , https://doi.org/10.1016/j.chroma.2017.04.004; Safari, M., Shahlaei, M., Yamini, Y., Shakorian, M., Arkan, E., Magnetic framework composite as sorbent for magnetic solid phase extraction coupled with high performance liquid chromatography for simultaneous extraction and determination of tricyclic antidepressants (2018) Anal. Chim. Acta., 1034, pp. 204-213. , https://doi.org/10.1016/j.ac.2018.06.023; Xie, Y., Liu, Q., Li, Y., Deng, C., Core-shell structured magnetic metal-organic framework composites for highly selective detection of N-glycopeptides based on boronic acid affinity chromatography (2018) J. Chromatogr. A., 1540, pp. 87-93. , https://doi.org/10.1016/j.chroma.2018.02.013; Yan, Z., He, M., Chen, B., Gui, B., Wang, C., Hu, B., Magnetic covalent triazine framework for rapid extraction of phthalate esters in plastic packaging materials followed by gas chromatography-flame ionization detection (2017) J. Chromatogr. A., 1525, pp. 32-41. , https://doi.org/10.1016/j.chroma.2017.10.025; Liang, R., Hu, Y., Li, G., Photochemical synthesis of magnetic covalent organic framework/carbon nanotube composite and its enrichment of heterocyclic aromatic amines in food samples (2020) J. Chromatogr. A., 1618, p. 460867. , https://doi.org/10.1016/j.chroma.2020.460867; Deng, Z.H., Wang, X., Wang, X.L., Gao, C.L., Dong, L., Wang, M.L., A core-shell structured magnetic covalent organic framework (type Fe3O4@COF) as a sorbent for solid-phase extraction of endocrine-disrupting phenols prior to their quantitation by HPLC (2019) Microchim. Acta., 186, p. 108. , https://doi.org/10.1007/s00604-018-3198-3; Chen, L., He, Y., Lei, Z., Gao, C., Xie, Q., Tong, P., Preparation of core-shell structured magnetic covalent organic framework nanocomposites for magnetic solid-phase extraction of bisphenols from human serum sample (2018) Talanta, 181, pp. 296-304. , https://doi.org/10.1016/j.talanta.2018.01.036; Chen, Y., Chen, Z., COF-1-modified magnetic nanoparticles for highly selective and efficient solid-phase microextraction of paclitaxel (2017) Talanta, 165, pp. 188-193. , https://doi.org/10.1016/j.talanta.2016.12.051; Li, N., Wu, D., Liu, J., Hu, N., Shi, X., Dai, C., Magnetic covalent organic frameworks based on magnetic solid phase extraction for determination of six steroidal and phenolic endocrine disrupting chemicals in food samples (2018) Microchem. J., 143, pp. 350-358. , https://doi.org/10.1016/j.microc.2018.08.036; Zhang, J., Chen, Z., Tang, S., Luo, X., Xi, J., He, Z., Fabrication of porphyrin-based magnetic covalent organic framework for effective extraction and enrichment of sulfonamides (2019) Anal. Chim. Acta., 1089, pp. 66-77. , https://doi.org/10.1016/j.ac.2019.08.066; Zhang, M., Li, J., Zhang, C., Wu, Z., Yang, Y., Li, J., In-situ synthesis of fluorinated magnetic covalent organic frameworks for fluorinated magnetic solid-phase extraction of ultratrace perfluorinated compounds from milk (2020) J. Chromatogr. A., 1615, p. 460773. , https://doi.org/10.1016/j.chroma.2019.460773; Lu, J., Wang, R., Luan, J., Li, Y., He, X., Chen, L., A functionalized magnetic covalent organic framework for sensitive determination of trace neonicotinoid residues in vegetable samples (2020) J. Chromatogr. A., 1618, p. 460898. , https://doi.org/10.1016/j.chroma.2020.460898; Lin, X., Wang, X., Wang, J., Yuan, Y., Di, S., Wang, Z., Facile synthesis of a core-shell structured magnetic covalent organic framework for enrichment of organophosphorus pesticides in fruits (2020) Anal. Chim. Acta., 1101, pp. 65-73. , https://doi.org/10.1016/j.ac.2019.12.012; Pang, Y.H., Yue, Q., ying Huang, Y., Yang, C., Shen, X.F., Facile magnetization of covalent organic framework for solid-phase extraction of 15 phthalate esters in beverage samples (2020) Talanta, 206, p. 120194. , https://doi.org/10.1016/j.talanta.2019.120194; Wei, X., Wang, Y., Chen, J., Xu, P., Xu, W., Ni, R., Poly(deep eutectic solvent)-functionalized magnetic metal-organic framework composites coupled with solid-phase extraction for the selective separation of cationic dyes (2019) Anal. Chim. Acta., 1056, pp. 47-61. , https://doi.org/10.1016/j.ac.2018.12.049; Zhou, Y., Zhu, J., Yang, J., Lv, Y., Zhu, Y., Bi, W., Magnetic nanoparticles speed up mechanochemical solid phase extraction with enhanced enrichment capability for organochlorines in plants (2019) Anal. Chim. Acta., 1066, pp. 49-57. , https://doi.org/10.1016/j.ac.2019.03.049; Cui, X.Y., Gu, Z.Y., Jiang, D.Q., Li, Y., Wang, H.F., Yan, X.P., In situ hydrothermal growth of metal-organic framework 199 films on stainless steel fibers for solid-phase microextraction of gaseous benzene homologues (2009) Anal. Chem., 81, pp. 9771-9777. , https://doi.org/10.1021/ac901663x; Zhang, G., Zang, X., Li, Z., Wang, C., Wang, Z., Polydimethylsiloxane/metal-organic frameworks coated fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in river and lake water samples (2014) Talanta., 129, pp. 600-605. , https://doi.org/10.1016/j.talanta.2014.06.013; Xie, L., Liu, S., Han, Z., Jiang, R., Liu, H., Zhu, F., Preparation and characterization of metal-organic framework MIL-101(Cr)-coated solid-phase microextraction fiber (2015) Anal. Chim. Acta., 853, pp. 303-310. , https://doi.org/10.1016/j.ac.2014.09.048; Mondal, S., Xu, J., Chen, G., Huang, S., Huang, C., Yin, L., Solid-phase microextraction of antibiotics from fish muscle by using MIL-101(Cr)NH2-polyacrylonitrile fiber and their identification by liquid chromatography-tandem mass spectrometry (2019) Anal. Chim. Acta., 1047, pp. 62-70. , https://doi.org/10.1016/j.ac.2018.09.060; Zhang, L., Jiang, R., Li, W., Muir, D.C.G., Zeng, E.Y., Development of a solid-phase microextraction method for fast analysis of cyclic volatile methylsiloxanes in water (2020) Chemosphere, 250, p. 126304. , https://doi.org/10.1016/j.chemosphere.2020.126304; Zang, X., Zhang, X., Chang, Q., Li, S., Wang, C., Wang, Z., Metal-organic framework UiO-67-coated fiber for the solid-phase microextraction of nitrobenzene compounds from water (2016) J. Sep. Sci., 39, pp. 2770-2776. , https://doi.org/10.1002/jssc.201600426; Huang, Z., Liu, S., Xu, J., Yin, L., Sun, F., Zhou, N., Fabrication of 8-aminocaprylic acid doped UIO-66 as sensitive solid-phase microextraction fiber for nitrosamines (2018) Talanta, 178, pp. 629-635. , https://doi.org/10.1016/j.talanta.2017.09.090; Jiang, H.L., Li, N., Wang, X., Wei, X.Y., Zhao, R.S., Lin, J.M., A zirconium-based metal-organic framework material for solid-phase microextraction of trace polybrominated diphenyl ethers from milk (2020) Food Chem., 317, p. 126436. , https://doi.org/10.1016/j.foodchem.2020.126436; Chen, J., Zhang, B., Dang, X., Zheng, D., Ai, Y., Chen, H., A nanocomposite consisting of etched multiwalled carbon nanotubes, amino-modified metal-organic framework UiO-66 and polyaniline for preconcentration of polycyclic aromatic hydrocarbons prior to their determination by HPLC (2020) Microchim. Acta., 187, p. 78. , https://doi.org/10.1007/s00604-019-3997-1; Zhang, N., Huang, C., Feng, Z., Chen, H., Tong, P., Wu, X., Metal-organic framework-coated stainless steel fiber for solid-phase microextraction of polychlorinated biphenyls (2018) J. Chromatogr. A., 1570, pp. 10-18. , https://doi.org/10.1016/j.chroma.2018.07.065; Kong, J., Zhu, F., Huang, W., He, H., Hu, J., Sun, C., Sol-gel based metal-organic framework zeolite imidazolate framework-8 fibers for solid-phase microextraction of nitro polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in water samples (2019) J. Chromatogr. A., 1603, pp. 92-101. , https://doi.org/10.1016/j.chroma.2019.06.063; Rocío-Bautista, P., Gutiérrez-Serpa, A., Cruz, A.J., Ameloot, R., Ayala, J.H., Afonso, A.M., Solid-phase microextraction coatings based on the metal-organic framework ZIF-8: ensuring stable and reusable fibers (2020) Talanta, 215, p. 120910. , https://doi.org/10.1016/j.talanta.2020.120910; Abolghasemi, M.M., Yousefi, V., Piryaei, M., Synthesis of a metal-organic framework confined in periodic mesoporous silica with enhanced hydrostability as a novel fiber coating for solid-phase microextraction (2015) J. Sep. Sci., 38, pp. 1187-1193. , https://doi.org/10.1002/jssc.201400916; Lan, H., Pan, D., Sun, Y., Guo, Y., Wu, Z., Thin metal organic frameworks coatings by cathodic electrodeposition for solid-phase microextraction and analysis of trace exogenous estrogens in milk (2016) Anal. Chim. Acta., 937, pp. 53-60. , https://doi.org/10.1016/j.ac.2016.07.041; Zhang, S., Yang, Q., Wang, W., Wang, C., Wang, Z., Covalent bonding of metal-organic framework-5/graphene oxide hybrid composite to stainless steel fiber for solid-phase microextraction of triazole fungicides from fruit and vegetable samples (2016) J. Agric. Food Chem., 64, pp. 2792-2801. , https://doi.org/10.1021/acs.jafc.5b05831; Lin, S., Gan, N., Zhang, J., Qiao, L., Chen, Y., Cao, Y., Aptamer-functionalized stir bar sorptive extraction coupled with gas chromatography-mass spectrometry for selective enrichment and determination of polychlorinated biphenyls in fish samples (2016) Talanta, 149, pp. 266-274. , https://doi.org/10.1016/j.talanta.2015.11.062; Zhang, S., Du, Z., Li, G., Metal-organic framework-199/graphite oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of organochlorine pesticides from complicated samples (2013) Talanta., 115, pp. 32-39. , https://doi.org/10.1016/j.talanta.2013.04.029; Zhang, Z., Huang, Y., Ding, W., Li, G., Multilayer interparticle linking hybrid MOF-199 for noninvasive enrichment and analysis of plant hormone ethylene (2014) Anal. Chem., 86, pp. 3533-3540. , https://doi.org/10.1021/ac404240n; Sun, S., Huang, L., Xiao, H., Shuai, Q., Hu, S., In situ self-transformation metal into metal-organic framework membrane for solid-phase microextraction of polycyclic aromatic hydrocarbons (2019) Talanta, 202, pp. 145-151. , https://doi.org/10.1016/j.talanta.2019.04.063; Niu, J., Li, Z., Yang, H., Ye, C., Chen, C., Li, D., A water resistant solid-phase microextraction fiber with high selectivity prepared by a metal organic framework with perfluorinated pores (2016) J. Chromatogr. A., 1441, pp. 16-23. , https://doi.org/10.1016/j.chroma.2016.02.076; Amanzadeh, H., Yamini, Y., Masoomi, M.Y., Morsali, A., Nanostructured metal-organic frameworks, TMU-4, TMU-5, and TMU-6, as novel adsorbents for solid phase microextraction of polycyclic aromatic hydrocarbons (2017) N. J. Chem., 41, pp. 12035-12043. , https://doi.org/10.1039/c7nj03225k; Liu, M., Liu, J., Guo, C., Li, Y., Metal azolate framework-66-coated fiber for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons (2019) J. Chromatogr. A., 1584, pp. 57-63. , https://doi.org/10.1016/j.chroma.2018.11.043; Bianchi, F., Pankajakshan, A., Fornari, F., Mandal, S., Pelagatti, P., Bacchi, A., A zinc mixed-ligand microporous metal-organic framework as solid-phase microextraction coating for priority polycyclic aromatic hydrocarbons from water samples (2020) Microchem. J., 154, p. 104646. , https://doi.org/10.1016/j.microc.2020.104646; Zhang, S., Yang, Q., Li, Z., Wang, W., Zang, X., Wang, C., Solid phase microextraction of phthalic acid esters from vegetable oils using iron (III)-based metal-organic framework/graphene oxide coating (2018) Food Chem., 263, pp. 258-264. , https://doi.org/10.1016/j.foodchem.2018.04.132; Niu, J., Zhao, X., Jin, Y., Yang, G., Li, Z., Wang, J., Determination of aromatic amines in the urine of smokers using a porous organic framework (JUC-Z2)-coated solid-phase microextraction fiber (2018) J. Chromatogr. A., 1555, pp. 37-44. , https://doi.org/10.1016/j.chroma.2018.04.059; Lyu, D.Y., Yang, C.X., Yan, X.P., Fabrication of aluminum terephthalate metal-organic framework incorporated polymer monolith for the microextraction of non-steroidal anti-inflammatory drugs in water and urine samples (2015) J. Chromatogr. A., 1393, pp. 1-7. , https://doi.org/10.1016/j.chroma.2015.03.020; Luo, X., Li, G., Hu, Y., In-tube solid-phase microextraction based on NH2-MIL-53(Al)-polymer monolithic column for online coupling with high-performance liquid chromatography for directly sensitive analysis of estrogens in human urine (2017) Talanta, 165, pp. 377-383. , https://doi.org/10.1016/j.talanta.2016.12.050; Lin, C.L., Lirio, S., Chen, Y.T., Lin, C.H., Huang, H.Y., A novel hybrid metal-organic framework-polymeric monolith for solid-phase microextraction (2014) Chem. —A Eur. J., 20, pp. 3317-3321. , https://doi.org/10.1002/chem.201304458; Yao, W., Fan, Z., Zhang, S., Preparation of metal-organic framework UiO-66-incorporated polymer monolith for the extraction of trace levels of fungicides in environmental water and soil samples (2019) J. Sep. Sci., 42, pp. 2679-2686. , https://doi.org/10.1002/jssc.201900168; Hu, C., He, M., Chen, B., Zhong, C., Hu, B., Sorptive extraction using polydimethylsiloxane/metal-organic framework coated stir bars coupled with high performance liquid chromatography-fluorescence detection for the determination of polycyclic aromatic hydrocarbons in environmental water samples (2014) J. Chromatogr. A., 1356, pp. 45-53. , https://doi.org/10.1016/j.chroma.2014.06.062; Wang, C., Zhou, W., Liao, X., Wang, X., Chen, Z., Covalent immobilization of metal organic frameworks onto chemical resistant poly(ether ether ketone) jacket for stir bar extraction (2018) Anal. Chim. Acta., 1025, pp. 124-133. , https://doi.org/10.1016/j.ac.2018.04.056; Xiao, Z., He, M., Chen, B., Hu, B., Polydimethylsiloxane/metal-organic frameworks coated stir bar sorptive extraction coupled to gas chromatography-flame photometric detection for the determination of organophosphorus pesticides in environmental water samples (2016) Talanta., 156-157, pp. 126-133. , https://doi.org/10.1016/j.talanta.2016.05.001; Ghani, M., Ghoreishi, S.M., Azamati, M., In-situ growth of zeolitic imidazole framework-67 on nanoporous anodized aluminum bar as stir-bar sorptive extraction sorbent for determining caffeine (2018) J. Chromatogr. A., 1577, pp. 15-23. , https://doi.org/10.1016/j.chroma.2018.09.049; Gao, G., Li, S., Li, S., Zhao, L., Wang, T., Hou, X., Development and application of vortex-assisted membrane extraction based on metal-organic framework mixed-matrix membrane for the analysis of estrogens in human urine (2018) Anal. Chim. Acta., 1023, pp. 35-43. , https://doi.org/10.1016/j.ac.2018.04.013; Bahrami, H., Rezaei, B., Jafari, M.T., Coupling of a novel electrospun polyacrylonitrile/amino-Zr-MOF nanofiber as a thin film for microextraction-corona discharge-ion mobility spectrometry for the analysis of chlorpyrifos in water samples (2019) Anal. Methods., 11, pp. 1073-1079. , https://doi.org/10.1039/c8ay02518e; Ghani, M., Font Picó, M.F., Salehinia, S., Palomino Cabello, C., Maya, F., Berlier, G., Metal-organic framework mixed-matrix disks: versatile supports for automated solid-phase extraction prior to chromatographic separation (2017) J. Chromatogr. A., 1488, pp. 1-9. , https://doi.org/10.1016/j.chroma.2017.01.069; Liu, F., Xu, H., Development of a novel polystyrene/metal-organic framework-199 electrospun nanofiber adsorbent for thin film microextraction of aldehydes in human urine (2017) Talanta., 162, pp. 261-267. , https://doi.org/10.1016/j.talanta.2016.09.065; Wu, T., Zang, X., Wang, M., Chang, Q., Wang, C., Wu, Q., Covalent organic framework as fiber coating for solid-phase microextraction of chlorophenols followed by quantification with gas chromatography-mass spectrometry (2018) J. Agric. Food Chem., 66, pp. 11158-11165. , https://doi.org/10.1021/acs.jafc.8b01643; Gao, W., Tian, Y., Liu, H., Cai, Y., Liu, A., Yu, Y.L., Ultrasensitive determination of tetrabromobisphenol A by covalent organic framework based solid phase microextraction coupled with constant flow desorption ionization mass spectrometry (2019) Anal. Chem., 91, pp. 772-775. , https://doi.org/10.1021/acs.analchem.8b04884; Liu, L., Meng, W.K., Zhou, Y.S., Wang, X., Xu, G.J., Wang, M.L., Β-Ketoenamine-linked covalent organic framework coating for ultra-high-performance solid-phase microextraction of polybrominated diphenyl ethers from environmental samples (2019) Chem. Eng. J., 356, pp. 926-933. , https://doi.org/10.1016/j.cej.2018.09.081; Guo, J.X., Qian, H.L., Zhao, X., Yang, C., Yan, X.P., In situ room-temperature fabrication of a covalent organic framework and its bonded fiber for solid-phase microextraction of polychlorinated biphenyls in aquatic products (2019) J. Mater. Chem. A., 7, pp. 13249-13255. , https://doi.org/10.1039/c9ta02974e; Wang, W., Wang, J., Zhang, S., Cui, P., Wang, C., Wang, Z., A novel Schiff base network-1 nanocomposite coated fiber for solid-phase microextraction of phenols from honey samples (2016) Talanta, 161, pp. 22-30. , https://doi.org/10.1016/j.talanta.2016.08.009; Wu, M., Chen, G., Liu, P., Zhou, W., Jia, Q., Polydopamine-based immobilization of a hydrazone covalent organic framework for headspace solid-phase microextraction of pyrethroids in vegetables and fruits (2016) J. Chromatogr. A., 1456, pp. 34-41. , https://doi.org/10.1016/j.chroma.2016.05.100; Lan, H., Salmi, L.D., Rönkkö, T., Parshintsev, J., Jussila, M., Hartonen, K., Integrated atomic layer deposition and chemical vapor reaction for the preparation of metal organic framework coatings for solid-phase microextraction Arrow (2018) Anal. Chim. Acta., 1024, pp. 93-100. , https://doi.org/10.1016/j.ac.2018.04.033; Li, D., Bie, Z., Metal-organic framework incorporated monolithic capillary for selective enrichment of phosphopeptides (2017) RSC Adv., 7, pp. 15894-15902. , https://doi.org/10.1039/c7ra00263g; Khoobi, A., Salavati-Niasari, M., Ghani, M., Ghoreishi, S.M., Gholami, A., Multivariate optimization methods for in-situ growth of LDH/ZIF-8 nanocrystals on anodized aluminium substrate as a nanosorbent for stir bar sorptive extraction in biological and food samples (2019) Food Chem., 288, pp. 39-46. , https://doi.org/10.1016/j.foodchem.2019.02.118; Ma, T.T., Shen, X.F., Yang, C., Qian, H.L., Pang, Y.H., Yan, X.P., Covalent immobilization of covalent organic framework on stainless steel wire for solid-phase microextraction GC-MS/MS determination of sixteen polycyclic aromatic hydrocarbons in grilled meat samples (2019) Talanta., 201, pp. 413-418. , https://doi.org/10.1016/j.talanta.2019.04.031},
publisher={Elsevier},
isbn={9780128221396; 9780128221723},
language={English},
abbrev_source_title={Analytical Sample Preparation With Nano- and Other High-Perform. Materials},
document_type={Book Chapter},
source={Scopus},
}

Downloads: 0