Every frame is a sum of three (but not two) orthonormal bases---and other frame representations. Casazza, P. G. J. Fourier Anal. Appl., 4(6):727--732, 1998.
Every frame is a sum of three (but not two) orthonormal bases---and other frame representations [link]Paper  doi  bibtex   
@article{ MR1666009,
  author = {Casazza, Peter G.},
  doi = {10.1007/BF02479676},
  fjournal = {The Journal of Fourier Analysis and Applications},
  issn = {1069-5869},
  journal = {J. Fourier Anal. Appl.},
  mrclass = {47A99 (42C15 46B15 46C05)},
  mrnumber = {1666009 (2000a:47046)},
  mrreviewer = {Jean-Pierre Gabardo},
  number = {6},
  pages = {727--732},
  title = {{Every frame is a sum of three (but not two) orthonormal bases---and other frame representations}},
  url = {http://dx.doi.org.login.library.coastal.edu:2048/10.1007/BF02479676},
  volume = {4},
  year = {1998}
}
Downloads: 0