Environmental controls on surf zone injuries on high-energy beaches. Castelle, B., Scott, T., Brander, R., McCarroll, J., Robinet, A., Tellier, E., Korte, E. d., Simonnet, B., & Salmi, L. 19(10):2183–2205. Number: 10
Environmental controls on surf zone injuries on high-energy beaches [link]Paper  doi  abstract   bibtex   
\textlessp\textgreater\textlessstrong\textgreaterAbstract.\textless/strong\textgreater The two primary causes of surf zone injuries (SZIs) worldwide, including fatal drowning and severe spinal injuries, are rip currents (rips) and shore-break waves. SZIs also result from surfing and bodyboarding activity. In this paper we address the primary environmental controls on SZIs along the high-energy meso–macro-tidal surf beach coast of southwestern France. A total of 2523 SZIs recorded by lifeguards over 186 sample days during the summers of 2007, 2009 and 2015 were combined with measured and/or hindcast weather, wave, tide, and beach morphology data. All SZIs occurred disproportionately on warm sunny days with low wind, likely because of increased beachgoer numbers and hazard exposure. Relationships were strongest for shore-break- and rip-related SZIs and weakest for surfing-related SZIs, the latter being also unaffected by tidal stage or range. Therefore, the analysis focused on bathers. More shore-break-related SZIs occur during shore-normal incident waves with average to below-average wave height (significant wave height, Hs \textlessspan class="inline-formula"\textgreater=\textless/span\textgreater 0.75–1.5 m) and around higher water levels and large tide ranges when waves break on the steepest section of the beach. In contrast, more rip-related drownings occur near neap low tide, coinciding with maximised channel rip flow activity, under shore-normal incident waves with Hs \textlessspan class="inline-formula"\textgreater>1.25\textless/span\textgreater m and mean wave periods longer than 5 s. Additional drowning incidents occurred at spring high tide, presumably due to small-scale swash rips. The composite wave and tide parameters proposed by Scott et al. (2014) are key controlling factors determining SZI occurrence, although the risk ranges are not necessarily transferable to all sites. Summer beach and surf zone morphology is interannually highly variable, which is critical to SZI patterns. The upper beach slope can vary from 0.06 to 0.18 between summers, resulting in low and high shore-break-related SZIs, respectively. Summers with coast-wide highly (weakly) developed rip channels also result in widespread (scarce) rip-related drowning incidents. With life risk defined in terms of the number of people exposed to life threatening hazards at a beach, the ability of morphodynamic models to simulate primary beach morphology characteristics a few weeks or months in advance is therefore of paramount importance for predicting the primary surf zone life risks along this coast.\textless/p\textgreater
@article{castelle_environmental_2019,
	title = {Environmental controls on surf zone injuries on high-energy beaches},
	volume = {19},
	issn = {1561-8633},
	url = {https://www.nat-hazards-earth-syst-sci.net/19/2183/2019/},
	doi = {10.5194/nhess-19-2183-2019},
	abstract = {{\textless}p{\textgreater}{\textless}strong{\textgreater}Abstract.{\textless}/strong{\textgreater} The two primary causes of surf zone injuries ({SZIs}) worldwide, including fatal drowning and severe spinal injuries, are rip currents (rips) and shore-break waves. {SZIs} also result from surfing and bodyboarding activity. In this paper we address the primary environmental controls on {SZIs} along the high-energy meso–macro-tidal surf beach coast of southwestern France. A total of 2523 {SZIs} recorded by lifeguards over 186 sample days during the summers of 2007, 2009 and 2015 were combined with measured and/or hindcast weather, wave, tide, and beach morphology data. All {SZIs} occurred disproportionately on warm sunny days with low wind, likely because of increased beachgoer numbers and hazard exposure. Relationships were strongest for shore-break- and rip-related {SZIs} and weakest for surfing-related {SZIs}, the latter being also unaffected by tidal stage or range. Therefore, the analysis focused on bathers. More shore-break-related {SZIs} occur during shore-normal incident waves with average to below-average wave height (significant wave height, \textit{Hs}\ {\textless}span class="inline-formula"{\textgreater}={\textless}/span{\textgreater}\ 0.75–1.5\ m) and around higher water levels and large tide ranges when waves break on the steepest section of the beach. In contrast, more rip-related drownings occur near neap low tide, coinciding with maximised channel rip flow activity, under shore-normal incident waves with \textit{Hs}\ {\textless}span class="inline-formula"{\textgreater}\>1.25{\textless}/span{\textgreater}\ m and mean wave periods longer than 5\ s. Additional drowning incidents occurred at spring high tide, presumably due to small-scale swash rips. The composite wave and tide parameters proposed by Scott et al. (2014) are key controlling factors determining {SZI} occurrence, although the risk ranges are not necessarily transferable to all sites. Summer beach and surf zone morphology is interannually highly variable, which is critical to {SZI} patterns. The upper beach slope can vary from 0.06 to 0.18 between summers, resulting in low and high shore-break-related {SZIs}, respectively. Summers with coast-wide highly (weakly) developed rip channels also result in widespread (scarce) rip-related drowning incidents. With life risk defined in terms of the number of people exposed to life threatening hazards at a beach, the ability of morphodynamic models to simulate primary beach morphology characteristics a few weeks or months in advance is therefore of paramount importance for predicting the primary surf zone life risks along this coast.{\textless}/p{\textgreater}},
	pages = {2183--2205},
	number = {10},
	journaltitle = {Natural Hazards and Earth System Sciences},
	author = {Castelle, Bruno and Scott, Tim and Brander, Rob and {McCarroll}, Jak and Robinet, Arthur and Tellier, Eric and Korte, Elias de and Simonnet, Bruno and Salmi, Louis-Rachid},
	urldate = {2019-11-26},
	date = {2019-10-09},
	note = {Number: 10}
}

Downloads: 0