[Zinc(II)(Pyridine-Containing Ligand)] Complexes as Single-Component Efficient Catalyst for Chemical Fixation of CO2 with Epoxides. Cavalleri, M., Panza, N., di Biase, A., Tseberlidis, G., Rizzato, S., Abbiati, G., & Caselli, A. European Journal of Organic Chemistry, 2021(19):2764-2771, John Wiley and Sons Inc, 2021. cited By 11
[Zinc(II)(Pyridine-Containing Ligand)] Complexes as Single-Component Efficient Catalyst for Chemical Fixation of CO2 with Epoxides [link]Paper  doi  abstract   bibtex   
The reaction between epoxides and CO2 to yield cyclic carbonates is efficiently promoted under solvent-free and relatively mild reaction conditions (0.5 mol % catalyst loading, 0.8 MPa, 125 °C) by zinc(II) complexes of pyridine containing macrocyclic ligands (Pc−L pyridinophanes). The zinc complexes have been fully characterized, including X-ray structural determination. The [Zn(II)X(Pc−L)]X complexes showed good solubility in several polar solvents, including cyclic carbonates. The scope of the reaction under solvent-free conditions has been studied and good to quantitative conversions with excellent selectivities have been obtained, starting from terminal epoxides. When solvent-free conditions were not possible (solid epoxides or low solubility of the catalyst in the oxirane) the use of cyclic carbonates as solvents has been successfully investigated. The remarkable stability of the catalytic system has been demonstrated by a series of consecutive runs. © 2021 The Authors. European Journal of Organic Chemistry published by Wiley-VCH GmbH
@ARTICLE{Cavalleri20212764,
author={Cavalleri, M. and Panza, N. and di Biase, A. and Tseberlidis, G. and Rizzato, S. and Abbiati, G. and Caselli, A.},
title={[Zinc(II)(Pyridine-Containing Ligand)] Complexes as Single-Component Efficient Catalyst for Chemical Fixation of CO2 with Epoxides},
journal={European Journal of Organic Chemistry},
year={2021},
volume={2021},
number={19},
pages={2764-2771},
doi={10.1002/ejoc.202100409},
note={cited By 11},
url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108278570&doi=10.1002%2fejoc.202100409&partnerID=40&md5=66d0736296a6f6a641805b3d6acec547},
affiliation={Department of Chemistry, Università degli Studi di Milano and CNR-SCITEC, via Golgi 19, Milano, 20133, Italy; Department of Materials Science and Solar Energy Research Center (MIB-SOLAR), University of Milano-Bicocca, via Cozzi 55, Milano, 20125, Italy; Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, via Venezian 21, Milano, 20133, Italy},
abstract={The reaction between epoxides and CO2 to yield cyclic carbonates is efficiently promoted under solvent-free and relatively mild reaction conditions (0.5 mol % catalyst loading, 0.8 MPa, 125 °C) by zinc(II) complexes of pyridine containing macrocyclic ligands (Pc−L pyridinophanes). The zinc complexes have been fully characterized, including X-ray structural determination. The [Zn(II)X(Pc−L)]X complexes showed good solubility in several polar solvents, including cyclic carbonates. The scope of the reaction under solvent-free conditions has been studied and good to quantitative conversions with excellent selectivities have been obtained, starting from terminal epoxides. When solvent-free conditions were not possible (solid epoxides or low solubility of the catalyst in the oxirane) the use of cyclic carbonates as solvents has been successfully investigated. The remarkable stability of the catalytic system has been demonstrated by a series of consecutive runs. © 2021 The Authors. European Journal of Organic Chemistry published by Wiley-VCH GmbH},
author_keywords={Carbon dioxide fixation;  Cyclic carbonates;  Cycloaddition;  Pyridine containing macrocyclic ligands;  Zinc complexes},
references={Martens, J.A., Bogaerts, A., De Kimpe, N., Jacobs, P.A., Marin, G.B., Rabaey, K., Saeys, M., Verhelst, S., (2017) ChemSusChem, 10, pp. 1039-1055; Modak, A., Bhanja, P., Dutta, S., Chowdhury, B., Bhaumik, A., (2020) Green Chem.; Claver, C., Yeamin, M.B., Reguero, M., Masdeu-Bultó, A.M., (2020) Green Chem., 22, pp. 7665-7706; Guo, L., Zhang, R., Xiong, Y., Chang, D., Zhao, H., Zhang, W., Zheng, W., Wu, X., (2020) Molecules, 25, p. 3627; Della Monica, F., Buonerba, A., Capacchione, C., (2019) Adv. Synth. Catal., 361, pp. 265-282; North, M., Pasquale, R., Young, C., (2010) Green Chem., 12, pp. 1514-1539; Aresta, M., Dibenedetto, A., Quaranta, E., (2016) J. Catal., 343, pp. 2-45; Hwang, G.-Y., Roshan, R., Ryu, H.-S., Jeong, H.-M., Ravi, S., Kim, M.-I., Park, D.-W., (2016) J. CO2 Util., 15, pp. 123-130; Yasuda, H., He, L.-N., Sakakura, T., (2002) J. Catal., 209, pp. 547-550; Liu, L., Wang, S.-M., Han, Z.-B., Ding, M., Yuan, D.-Q., Jiang, H.-L., (2016) Inorg. Chem., 55, pp. 3558-3565; Sun, J., Cheng, W., Fan, W., Wang, Y., Meng, Z., Zhang, S., (2009) Catal. Today, 148, pp. 361-367; Zhang, W., Wang, Q., Wu, H., Wu, P., He, M., (2014) Green Chem., 16, pp. 4767-4774; Wang, J.-Q., Yue, X.-D., Cai, F., He, L.-N., (2007) Catal. Commun., 8, pp. 167-172; Roshan, K.R., Mathai, G., Kim, J., Tharun, J., Park, G.-A., Park, D.-W., (2012) Green Chem., 14, pp. 2933-2940; Sun, J., Fujita, S.-I., Arai, M., (2005) J. Organomet. Chem., 690, pp. 3490-3497; Byun, J., Zhang, K.A.I., (2018) ChemCatChem, 10, pp. 4610-4616; Wang, J.-Q., Dong, K., Cheng, W.-G., Sun, J., Zhang, S.-J., (2012) Catal. Sci. Technol., 2, pp. 1480-1484; Kilic, A., Sobay, B., Aytar, E., Söylemez, R., (2020) Sustain. Energy Fuels, 4, pp. 5682-5696; Monfared, A., Mohammadi, R., Hosseinian, A., Sarhandi, S., Kheirollahi Nezhad, P.D., (2019) RSC Adv., 9, pp. 3884-3899; Tseberlidis, G., Demonti, L., Pirovano, V., Scavini, M., Cappelli, S., Rizzato, S., Vicente, R., Caselli, A., (2019) ChemCatChem, 11, pp. 4907-4915; Panza, N., di Biase, A., Rizzato, S., Gallo, E., Tseberlidis, G., Caselli, A., (2020) Eur. J. Org. Chem., 2020, pp. 6635-6644; Tseberlidis, G., Caselli, A., Vicente, R., (2017) J. Organomet. Chem., 835, pp. 1-5; Tseberlidis, G., Dell'Acqua, M., Valcarenghi, D., Gallo, E., Rossi, E., Abbiati, G., Caselli, A., (2016) RSC Adv., 6, pp. 97404-97419; Pedrazzini, T., Pirovano, P., Dell′Acqua, M., Ragaini, F., Illiano, P., Macchi, P., Abbiati, G., Caselli, A., (2015) Eur. J. Inorg. Chem., 2015, pp. 5089-5098; Castano, B., Gallo, E., Cole-Hamilton, D.J., Dal Santo, V., Psaro, R., Caselli, A., (2014) Green Chem., 16, pp. 3202-3209; Dell'Acqua, M., Castano, B., Cecchini, C., Pedrazzini, T., Pirovano, V., Rossi, E., Caselli, A., Abbiati, G., (2014) J. Org. Chem., 79, pp. 3494-3505; Trose, M., Dell'Acqua, M., Pedrazzini, T., Pirovano, V., Gallo, E., Rossi, E., Caselli, A., Abbiati, G., (2014) J. Org. Chem., 79, pp. 7311-7320; Castano, B., Guidone, S., Gallo, E., Ragaini, F., Casati, N., Macchi, P., Sisti, M., Caselli, A., (2013) Dalton Trans., 42, pp. 2451-2462; Castano, B., Zardi, P., Honemann, Y.C., Galarneau, A., Gallo, E., Psaro, R., Caselli, A., Dal Santo, V., (2013) RSC Adv., 3, pp. 22199-22205; Castano, B., Pedrazzini, T., Sisti, M., Gallo, E., Ragaini, F., Casati, N., Caselli, A., (2011) Appl. Organomet. Chem., 25, pp. 824-829; Caselli, A., Cesana, F., Gallo, E., Casati, N., Macchi, P., Sisti, M., Celentano, G., Cenini, S., (2008) Dalton Trans., pp. 4202-4205; Serrano-Plana, J., Aguinaco, A., Belda, R., García-España, E., Basallote, M.G., Company, A., Costas, M., (2016) Angew. Chem. Int. Ed., 55, pp. 6310-6314; (2016) Angew. Chem., 128, pp. 6418-6422; Felix, V., Costa, J., Delgado, R., Drew, M.G.B., Duarte, M.T., Resende, C., (2001) J. Chem. Soc. Dalton Trans., pp. 1462-1471; Lincoln, K.M., Offutt, M.E., Hayden, T.D., Saunders, R.E., Green, K.N., (2014) Inorg. Chem., 53, pp. 1406-1416; Lincoln, K.M., Gonzalez, P., Richardson, T.E., Julovich, D.A., Saunders, R., Simpkins, J.W., Green, K.N., (2013) Chem. Commun., 49, pp. 2712-2714; Alcock, N.W., Busch, D.H., Liu, C.Y., (2006) CSD Communication, , CCDC; Addison, A.W., Rao, T.N., Reedijk, J., van Rijn, J., Verschoor, G.C., (1984) J. Chem. Soc. Dalton Trans., pp. 1349-1356; Castro-Gómez, F., Salassa, G., Kleij, A.W., Bo, C., (2013) Chem. Eur. J., 19, pp. 6289-6298; Wang, S., Peng, J., Yang, H.-J., Ban, B., Wang, L., Lei, B., Guo, C.-Y., Han, B., (2019) J. Nanosci. Nanotechnol., 19, pp. 3263-3268; Campisciano, V., Calabrese, C., Giacalone, F., Aprile, C., Lo Meo, P., Gruttadauria, M., (2020) J. CO2 Util., 38, pp. 132-140. , For considerations on TOF calculations in the CO, reaction with epoxide in the presence of catalysts and co-catalysts, see; Leu, M.K., Vicente, I., Fernandes, J.A., de Pedro, I., Dupont, J., Sans, V., Licence, P., Cano, I., (2019) Appl. Catal. B, 245, pp. 240-250; Besse, V., Camara, F., Voirin, C., Auvergne, R., Caillol, S., Boutevin, B., (2013) Polym. Chem., 4, pp. 4545-4561; Cheng, C., Li, Y., Zhang, X., Li, J., (2017) Iran. Polym. J., 26, pp. 821-831; SAINT Madison, USA 2007.; (2001) SADABS Area-Detector Absorption Correction Program, , Madison, WI, USA; Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M.C., Polidori, G., Camalli, M., (1994) J. Appl. Crystallogr., 27, pp. 435-436; Sheldrick, G., (2015) Acta Crystallogr. Sect. A, 71, pp. 3-8; Farrugia, L.J., (1999) J. Appl. Crystallogr., 32, pp. 837-838},
correspondence_address1={Caselli, A.; Department of Chemistry, via Golgi 19, Italy; email: alessandro.caselli@unimi.it},
publisher={John Wiley and Sons Inc},
issn={1434193X},
coden={EJOCF},
language={English},
abbrev_source_title={Eur. J. Org. Chem.},
document_type={Article},
source={Scopus},
}

Downloads: 0