SoK: Understanding the Prevailing Security Vulnerabilities in TrustZone-assisted TEE Systems. Cerdeira, D., Santos, N., Fonseca, P., & Pinto, S.
abstract   bibtex   
Hundreds of millions of mobile devices worldwide rely on Trusted Execution Environments (TEEs) built with Arm TrustZone for the protection of security-critical applications (e.g., DRM) and operating system (OS) components (e.g., Android keystore). TEEs are often assumed to be highly secure; however, over the past years, TEEs have been successfully attacked multiple times, with highly damaging impact across various platforms. Unfortunately, these attacks have been possible by the presence of security flaws in TEE systems. In this paper, we aim to understand which types of vulnerabilities and limitations affect existing TrustZone-assisted TEE systems, what are the main challenges to build them correctly, and what contributions can be borrowed from the research community to overcome them. To this end, we present a security analysis of popular TrustZone-assisted TEE systems (targeting Cortex-A processors) developed by Qualcomm, Trustonic, Huawei, Nvidia, and Linaro. By studying publicly documented exploits and vulnerabilities as well as by reverse engineering the TEE firmware, we identified several critical vulnerabilities across existing systems which makes it legitimate to raise reasonable concerns about the security of commercial TEE implementations.
@article{cerdeira_sok_nodate,
	title = {{SoK}: {Understanding} the {Prevailing} {Security} {Vulnerabilities} in {TrustZone}-assisted {TEE} {Systems}},
	abstract = {Hundreds of millions of mobile devices worldwide rely on Trusted Execution Environments (TEEs) built with Arm TrustZone for the protection of security-critical applications (e.g., DRM) and operating system (OS) components (e.g., Android keystore). TEEs are often assumed to be highly secure; however, over the past years, TEEs have been successfully attacked multiple times, with highly damaging impact across various platforms. Unfortunately, these attacks have been possible by the presence of security flaws in TEE systems. In this paper, we aim to understand which types of vulnerabilities and limitations affect existing TrustZone-assisted TEE systems, what are the main challenges to build them correctly, and what contributions can be borrowed from the research community to overcome them. To this end, we present a security analysis of popular TrustZone-assisted TEE systems (targeting Cortex-A processors) developed by Qualcomm, Trustonic, Huawei, Nvidia, and Linaro. By studying publicly documented exploits and vulnerabilities as well as by reverse engineering the TEE firmware, we identified several critical vulnerabilities across existing systems which makes it legitimate to raise reasonable concerns about the security of commercial TEE implementations.},
	language = {en},
	author = {Cerdeira, David and Santos, Nuno and Fonseca, Pedro and Pinto, Sandro},
	pages = {17}
}

Downloads: 0