Cooperative Effects of Cellulose Nanocrystals and Sepiolite When Combined on Ionic Liquid Plasticised Chitosan Materials. Chen, P., Xie, F., Tang, F., & McNally, T. POLYMERS, February, 2021.
doi  abstract   bibtex   
Cellulose nanocrystals (CNCs) and/or sepiolite (SPT) were thermomechanically mixed with un-plasticised chitosan and chitosan/carboxymethyl cellulose (CMC) blends plasticised with 1-ethyl-3-methylimidazolium acetate ([C(2)mim][OAc]). Examination of the morphology of these materials indicates that SPT aggregates were reduced when CNCs or [C(2)mim][OAc] were present. Inclusion of CNCs and/or SPT had a greater effect on material properties when the matrices were un-plasticised. Addition of SPT or CNCs altered the crystalline structure of the un-plasticised chitosan matrix. Moreover, a combination of SPT and CNCs was more effective at suppressing re-crystallisation. Nonetheless, the mechanical properties and surface hydrophobicity were more related to CNC/SPT-biopolymer interactions. The un-plasticised bionanocomposites generally showed increased relaxation temperatures, enhanced tensile strength, and reduced surface wettability. For the [C(2)mim][OAc] plasticised matrices, the ionic liquid (IL) dominates the interactions with the biopolymers such that the effect of the nanofillers is diminished. However, for the [C(2)mim][OAc] plasticised chitosan/CMC matrix, CNCs and SPT acted synergistically suppressing re-crystallisation but resulting in increased tensile strength.
@article{chen_cooperative_2021,
	title = {Cooperative {Effects} of {Cellulose} {Nanocrystals} and {Sepiolite} {When} {Combined} on {Ionic} {Liquid} {Plasticised} {Chitosan} {Materials}},
	volume = {13},
	issn = {2073-4360},
	doi = {10.3390/polym13040571},
	abstract = {Cellulose nanocrystals (CNCs) and/or sepiolite (SPT) were thermomechanically mixed with un-plasticised chitosan and chitosan/carboxymethyl cellulose (CMC) blends plasticised with 1-ethyl-3-methylimidazolium acetate ([C(2)mim][OAc]). Examination of the morphology of these materials indicates that SPT aggregates were reduced when CNCs or [C(2)mim][OAc] were present. Inclusion of CNCs and/or SPT had a greater effect on material properties when the matrices were un-plasticised. Addition of SPT or CNCs altered the crystalline structure of the un-plasticised chitosan matrix. Moreover, a combination of SPT and CNCs was more effective at suppressing re-crystallisation. Nonetheless, the mechanical properties and surface hydrophobicity were more related to CNC/SPT-biopolymer interactions. The un-plasticised bionanocomposites generally showed increased relaxation temperatures, enhanced tensile strength, and reduced surface wettability. For the [C(2)mim][OAc] plasticised matrices, the ionic liquid (IL) dominates the interactions with the biopolymers such that the effect of the nanofillers is diminished. However, for the [C(2)mim][OAc] plasticised chitosan/CMC matrix, CNCs and SPT acted synergistically suppressing re-crystallisation but resulting in increased tensile strength.},
	number = {4},
	urldate = {2021-03-17},
	journal = {POLYMERS},
	author = {Chen, Pei and Xie, Fengwei and Tang, Fengzai and McNally, Tony},
	month = feb,
	year = {2021},
}

Downloads: 0