Genetic architecture behind developmental and seasonal control of tree growth and wood properties in Norway spruce. Chen, Z., Zan, Y., Zhou, L., Karlsson, B., Tuominen, H., García-Gil, M. R., & Wu, H. X. Frontiers in Plant Science, August, 2022.
Genetic architecture behind developmental and seasonal control of tree growth and wood properties in Norway spruce [link]Paper  abstract   bibtex   
Genetic control of tree growth and wood formation varies depending on the age of the tree and the time of the year. Single-locus, multi-locus, and multi-trait genome-wide association studies (GWAS) were conducted on 34 growth and wood property traits in 1,303 Norway spruce individuals using exome capture to cover ~130K single-nucleotide polymorphisms (SNPs). GWAS identified associations to the different wood traits in a total of 85 gene models, and several of these were validated in a progenitor population. A multi-locus GWAS model identified more SNPs associated with the studied traits than single-locus or multivariate models. Changes in tree age and annual season influenced the genetic architecture of growth and wood properties in unique ways, manifested by non-overlapping SNP loci. In addition to completely novel candidate genes, SNPs were located in genes previously associated with wood formation, such as cellulose synthases and a NAC transcription factor, but that have not been earlier linked to seasonal or age-dependent regulation of wood properties. Interestingly, SNPs associated with the width of the year rings were identified in homologs of Arabidopsis thaliana BARELY ANY MERISTEM 1 and rice BIG GRAIN 1, which have been previously shown to control cell division and biomass production. The results provide tools for future Norway spruce breeding and functional studies.
@article{chen_genetic_2022,
	title = {Genetic architecture behind developmental and seasonal control of tree growth and wood properties in {Norway} spruce},
	volume = {13},
	issn = {1664-462X},
	url = {https://www.frontiersin.org/articles/10.3389/fpls.2022.927673},
	abstract = {Genetic control of tree growth and wood formation varies depending on the age of the tree and the time of the year. Single-locus, multi-locus, and multi-trait genome-wide association studies (GWAS) were conducted on 34 growth and wood property traits in 1,303 Norway spruce individuals using exome capture to cover {\textasciitilde}130K single-nucleotide polymorphisms (SNPs). GWAS identified associations to the different wood traits in a total of 85 gene models, and several of these were validated in a progenitor population. A multi-locus GWAS model identified more SNPs associated with the studied traits than single-locus or multivariate models. Changes in tree age and annual season influenced the genetic architecture of growth and wood properties in unique ways, manifested by non-overlapping SNP loci. In addition to completely novel candidate genes, SNPs were located in genes previously associated with wood formation, such as cellulose synthases and a NAC transcription factor, but that have not been earlier linked to seasonal or age-dependent regulation of wood properties. Interestingly, SNPs associated with the width of the year rings were identified in homologs of Arabidopsis thaliana BARELY ANY MERISTEM 1 and rice BIG GRAIN 1, which have been previously shown to control cell division and biomass production. The results provide tools for future Norway spruce breeding and functional studies.},
	urldate = {2022-09-01},
	journal = {Frontiers in Plant Science},
	author = {Chen, Zhi-Qiang and Zan, Yanjun and Zhou, Linghua and Karlsson, Bo and Tuominen, Hannele and García-Gil, Maria Rosario and Wu, Harry X.},
	month = aug,
	year = {2022},
	keywords = {⛔ No DOI found},
}

Downloads: 0