BTM: Topic Modeling over Short Texts. Cheng, X., Yan, X., Lan, Y., & Guo, J.
BTM: Topic Modeling over Short Texts [pdf]Paper  BTM: Topic Modeling over Short Texts [link]Website  abstract   bibtex   
—Short texts are popular on today's Web, especially with the emergence of social media. Inferring topics from large scale short texts becomes a critical but challenging task for many content analysis tasks. Conventional topic models such as latent Dirichlet allocation (LDA) and probabilistic latent semantic analysis (PLSA) learn topics from document-level word co-occurrences by modeling each document as a mixture of topics, whose inference suffers from the sparsity of word co-occurrence patterns in short texts. In this paper, we propose a novel way for short text topic modeling, referred as biterm topic model (BTM). BTM learns topics by directly modeling the generation of word co-occurrence patterns (i.e., biterms) in the corpus, making the inference effective with the rich corpus-level information. To cope with large scale short text data, we further introduce two online algorithms for BTM for efficient topic learning. Experiments on real-word short text collections show that BTM can discover more prominent and coherent topics, and significantly outperform the state-of-the-art baselines. We also demonstrate the appealing performance of the two online BTM algorithms on both time efficiency and topic learning.

Downloads: 0