Controlling flowering of Medicago sativa (alfalfa) by inducing dominant mutations. Chiurazzi, M. J., Nørrevang, A. F., García, P., Cerdán, P. D., Palmgren, M., & Wenkel, S. Journal of Integrative Plant Biology, 64(2):205–214, 2022.
Controlling flowering of Medicago sativa (alfalfa) by inducing dominant mutations [link]Paper  doi  abstract   bibtex   
Breeding plants with polyploid genomes is challenging because functional redundancy hampers the identification of loss-of-function mutants. Medicago sativa is tetraploid and obligate outcrossing, which together with inbreeding depression complicates traditional breeding approaches in obtaining plants with a stable growth habit. Inducing dominant mutations would provide an alternative strategy to introduce domestication traits in plants with high gene redundancy. Here we describe two complementary strategies to induce dominant mutations in the M. sativa genome and how they can be relevant in the control of flowering time. First, we outline a genome-engineering strategy that harnesses the use of microProteins as developmental regulators. MicroProteins are small proteins that appeared during genome evolution from genes encoding larger proteins. Genome-engineering allows us to retrace evolution and create microProtein-coding genes de novo. Second, we provide an inventory of genes regulated by microRNAs that control plant development. Making respective gene transcripts microRNA-resistant by inducing point mutations can uncouple microRNA regulation. Finally, we investigated the recently published genomes of M. sativa and provide an inventory of breeding targets, some of which, when mutated, are likely to result in dominant traits.
@article{chiurazzi_controlling_2022,
	title = {Controlling flowering of {Medicago} sativa (alfalfa) by inducing dominant mutations},
	volume = {64},
	issn = {1744-7909},
	url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/jipb.13186},
	doi = {10.1111/jipb.13186},
	abstract = {Breeding plants with polyploid genomes is challenging because functional redundancy hampers the identification of loss-of-function mutants. Medicago sativa is tetraploid and obligate outcrossing, which together with inbreeding depression complicates traditional breeding approaches in obtaining plants with a stable growth habit. Inducing dominant mutations would provide an alternative strategy to introduce domestication traits in plants with high gene redundancy. Here we describe two complementary strategies to induce dominant mutations in the M. sativa genome and how they can be relevant in the control of flowering time. First, we outline a genome-engineering strategy that harnesses the use of microProteins as developmental regulators. MicroProteins are small proteins that appeared during genome evolution from genes encoding larger proteins. Genome-engineering allows us to retrace evolution and create microProtein-coding genes de novo. Second, we provide an inventory of genes regulated by microRNAs that control plant development. Making respective gene transcripts microRNA-resistant by inducing point mutations can uncouple microRNA regulation. Finally, we investigated the recently published genomes of M. sativa and provide an inventory of breeding targets, some of which, when mutated, are likely to result in dominant traits.},
	language = {en},
	number = {2},
	urldate = {2022-11-30},
	journal = {Journal of Integrative Plant Biology},
	author = {Chiurazzi, Maurizio Junior and Nørrevang, Anton Frisgaard and García, Pedro and Cerdán, Pablo D. and Palmgren, Michael and Wenkel, Stephan},
	year = {2022},
	keywords = {Medicago sativa, flowering time, genome-engineering, microProtein, microRNA},
	pages = {205--214},
}

Downloads: 0