MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding. Chou, Y., Chen, I., Chang, C., Ching, J., & Yang, Y. 2021.
abstract   bibtex   
An attempt to employ the mask language modeling approach of BERT to pre-train a 12-layer Transformer model for tackling a number of symbolic-domain discriminative music understanding tasks, finding that, given a pretrained Transformer, the models outperform recurrent neural network based baselines with less than 10 epochs of fine-tuning. This paper presents an attempt to employ the mask language modeling approach of BERT to pre-train a 12-layer Transformer model over 4,166 pieces of polyphonic piano MIDI files for tackling a number of symbolic-domain discriminative music understanding tasks. These include two note-level classification tasks, i.e., melody extraction and velocity prediction, as well as two sequence-level classification tasks, i.e., composer classification and emotion classification. We find that, given a pretrained Transformer, our models outperform recurrent neural network based baselines with less than 10 epochs of fine-tuning. Ablation studies show that the pre-training remains effective even if none of the MIDI data of the downstream tasks are seen at the pre-training stage, and that freezing the self-attention layers of the Transformer at the fine-tuning stage slightly degrades performance. All the five datasets employed in this work are publicly available, as well as checkpoints of our pre-trained and fine-tuned models. As such, our research can be taken as a benchmark for symbolic-domain music understanding.
@misc{chou_midibert-piano_2021,
	title = {{MidiBERT}-{Piano}: {Large}-scale {Pre}-training for {Symbolic} {Music} {Understanding}},
	shorttitle = {{MidiBERT}-{Piano}},
	abstract = {An attempt to employ the mask language modeling approach of BERT to pre-train a 12-layer Transformer model for tackling a number of symbolic-domain discriminative music understanding tasks, finding that, given a pretrained Transformer, the models outperform recurrent neural network based baselines with less than 10 epochs of fine-tuning. This paper presents an attempt to employ the mask language modeling approach of BERT to pre-train a 12-layer Transformer model over 4,166 pieces of polyphonic piano MIDI files for tackling a number of symbolic-domain discriminative music understanding tasks. These include two note-level classification tasks, i.e., melody extraction and velocity prediction, as well as two sequence-level classification tasks, i.e., composer classification and emotion classification. We find that, given a pretrained Transformer, our models outperform recurrent neural network based baselines with less than 10 epochs of fine-tuning. Ablation studies show that the pre-training remains effective even if none of the MIDI data of the downstream tasks are seen at the pre-training stage, and that freezing the self-attention layers of the Transformer at the fine-tuning stage slightly degrades performance. All the five datasets employed in this work are publicly available, as well as checkpoints of our pre-trained and fine-tuned models. As such, our research can be taken as a benchmark for symbolic-domain music understanding.},
	author = {Chou, Yi-Hui and Chen, I.-Chun and Chang, Chin-Jui and Ching, Joann and Yang, Yi-Hsuan},
	year = {2021},
	keywords = {Performance},
}

Downloads: 0