Resolving a dusty, star-forming SHiZELS galaxy at z=2.2 with HST, ALMA and SINFONI on kiloparsec scales. Cochrane, R. K., Best, P. N., Smail, I., Ibar, E., Swinbank, A. M., Molina, J., Sobral, D., & Dudzeviciute, U. arXiv e-prints, 2102:arXiv:2102.07791, February, 2021.
Resolving a dusty, star-forming SHiZELS galaxy at z=2.2 with HST, ALMA and SINFONI on kiloparsec scales [link]Paper  abstract   bibtex   
We present \textasciitilde0.15'' spatial resolution imaging of SHiZELS-14, a massive (M*\textasciitilde10\textasciicircum11 M_sol), dusty, star-forming galaxy at z=2.24. Our rest-frame \textasciitilde1kpc-scale, matched-resolution data comprise four different widely used tracers of star formation: the H-alpha emission line (from SINFONI/VLT), rest-frame UV continuum (from HST F606W imaging), the rest-frame far-infrared (from ALMA), and the radio continuum (from JVLA). Although originally identified by its modest H-alpha emission line flux, SHiZELS-14 appears to be a vigorously star-forming (SFR\textasciitilde1000 M_sol/yr) example of a submillimeter galaxy, probably undergoing a merger. SHiZELS-14 displays a compact, dusty central starburst, as well as extended emission in \${\textbackslash}rm\{H\}{\textbackslash}alpha\$ and the rest-frame optical and FIR. The UV emission is spatially offset from the peak of the dust continuum emission, and appears to trace holes in the dust distribution. We find that the dust attenuation varies across the spatial extent of the galaxy, reaching a peak of at least A_H-alpha\textasciitilde5 in the most dusty regions, although the extinction in the central starburst is likely to be much higher. Global star-formation rates inferred using standard calibrations for the different tracers vary from \textasciitilde10-1000 M_sol/yr, and are particularly discrepant in the galaxy's dusty centre. This galaxy highlights the biased view of the evolution of star-forming galaxies provided by shorter wavelength data.
@article{cochrane_resolving_2021,
	title = {Resolving a dusty, star-forming {SHiZELS} galaxy at z=2.2 with {HST}, {ALMA} and {SINFONI} on kiloparsec scales},
	volume = {2102},
	url = {http://adsabs.harvard.edu/abs/2021arXiv210207791C},
	abstract = {We present {\textasciitilde}0.15'' spatial resolution imaging of SHiZELS-14, a massive 
(M*{\textasciitilde}10{\textasciicircum}11 M\_sol), dusty, star-forming galaxy at z=2.24. Our rest-frame
{\textasciitilde}1kpc-scale, matched-resolution data comprise four different widely used
tracers of star formation: the H-alpha emission line (from SINFONI/VLT),
rest-frame UV continuum (from HST F606W imaging), the rest-frame
far-infrared (from ALMA), and the radio continuum (from JVLA). Although
originally identified by its modest H-alpha emission line flux,
SHiZELS-14 appears to be a vigorously star-forming (SFR{\textasciitilde}1000 M\_sol/yr)
example of a submillimeter galaxy, probably undergoing a merger.
SHiZELS-14 displays a compact, dusty central starburst, as well as
extended emission in \${\textbackslash}rm\{H\}{\textbackslash}alpha\$ and the rest-frame optical and FIR.
The UV emission is spatially offset from the peak of the dust continuum
emission, and appears to trace holes in the dust distribution. We find
that the dust attenuation varies across the spatial extent of the
galaxy, reaching a peak of at least A\_H-alpha{\textasciitilde}5 in the most dusty
regions, although the extinction in the central starburst is likely to
be much higher. Global star-formation rates inferred using standard
calibrations for the different tracers vary from {\textasciitilde}10-1000 M\_sol/yr, and
are particularly discrepant in the galaxy's dusty centre. This galaxy
highlights the biased view of the evolution of star-forming galaxies
provided by shorter wavelength data.},
	urldate = {2021-02-24},
	journal = {arXiv e-prints},
	author = {Cochrane, R. K. and Best, P. N. and Smail, I. and Ibar, E. and Swinbank, A. M. and Molina, J. and Sobral, D. and Dudzeviciute, U.},
	month = feb,
	year = {2021},
	keywords = {Astrophysics - Astrophysics of Galaxies},
	pages = {arXiv:2102.07791},
}

Downloads: 0