Purification and characterization of the dihydropyridine-sensitive voltage-dependent calcium channel from cardiac tissue. Cooper, C. L., Vandaele, S., Barhanin, J., Fosset, M., Lazdunski, M., & Hosey, M. M The Journal of Biological Chemistry, 262(2):509--512, 1987.
abstract   bibtex   
The dihydropyridine-sensitive voltage-dependent Ca2+ channel from cardiac tissue was purified 900-fold using DEAE-Sephadex A-25, concanavalin A-Sepharose, and wheat germ agglutinin-Sepharose. The purified preparation was highly enriched in a peptide of 140,000 daltons when electrophoresed on sodium dodecyl sulfate gels in the presence of 2-mercaptoethanol, or 170,000 when electrophoresed in the presence of iodoacetamide. Polyclonal antibodies raised against the purified subunits of the rabbit skeletal muscle Ca2+ channel recognized the 170-kDa protein in preparations electrophoresed under nonreducing conditions, and the large peptide of 140 kDa and smaller peptides of 29-32 kDa in preparations analyzed under reducing conditions. Monoclonal antibodies, which were raised against the native Ca2+ channel from skeletal muscle, immunoprecipitated [3H]PN 200-110 binding activity from solubilized cardiac membranes and immunoprecipitated 125I-labeled peptides (from the purified cardiac Ca2+ channel preparation) which migrated as a single species of 170 kDa under nonreducing conditions, or as 140, 32, and 29 kDa under reducing conditions. The results show that the purified cardiac Ca2+ channel, like that previously purified from skeletal muscle, consists of a major component of 170 kDa which is comprised of a 140-kDa peptide linked by disulfide bonds to smaller peptides of 32-29 kDa. Peptide maps of the 140-kDa peptide purified from cardiac and skeletal muscle preparations were strikingly similar, suggesting a high degree of homology in their primary sequence
@article{cooper_purification_1987,
	title = {Purification and characterization of the dihydropyridine-sensitive voltage-dependent calcium channel from cardiac tissue},
	volume = {262},
	issn = {00219258},
	abstract = {The dihydropyridine-sensitive voltage-dependent Ca2+ channel from cardiac tissue was purified 900-fold using DEAE-Sephadex A-25, concanavalin A-Sepharose, and wheat germ agglutinin-Sepharose. The purified preparation was highly enriched in a peptide of 140,000 daltons when electrophoresed on sodium dodecyl sulfate gels in the presence of 2-mercaptoethanol, or 170,000 when electrophoresed in the presence of iodoacetamide. Polyclonal antibodies raised against the purified subunits of the rabbit skeletal muscle Ca2+ channel recognized the 170-kDa protein in preparations electrophoresed under nonreducing conditions, and the large peptide of 140 kDa and smaller peptides of 29-32 kDa in preparations analyzed under reducing conditions. Monoclonal antibodies, which were raised against the native Ca2+ channel from skeletal muscle, immunoprecipitated [3H]PN 200-110 binding activity from solubilized cardiac membranes and immunoprecipitated 125I-labeled peptides (from the purified cardiac Ca2+ channel preparation) which migrated as a single species of 170 kDa under nonreducing conditions, or as 140, 32, and 29 kDa under reducing conditions. The results show that the purified cardiac Ca2+ channel, like that previously purified from skeletal muscle, consists of a major component of 170 kDa which is comprised of a 140-kDa peptide linked by disulfide bonds to smaller peptides of 32-29 kDa. Peptide maps of the 140-kDa peptide purified from cardiac and skeletal muscle preparations were strikingly similar, suggesting a high degree of homology in their primary sequence},
	number = {2},
	journal = {The Journal of Biological Chemistry},
	author = {Cooper, Christy L. and Vandaele, Sylvie and Barhanin, Jacques and Fosset, Michel and Lazdunski, Michel and Hosey, Marlene M},
	year = {1987},
	pmid = {2433268},
	keywords = {Recherche biomédicale},
	pages = {509--512}
}
Downloads: 0