Glyphosate-induced weed shifts. Culpepper, A., S. Weed Technology, 20:277-281, 2006.
abstract   bibtex   
Composition and abundance of weed populations often change in response to new or extensively used weed management practices. Glyphosate-resistant (GR) technology is one such weed management practice now used extensively. A recent survey of weed scientists was conducted to address weed shifts in GR corn, cotton, and soybean. Twelve scientists in 11 states responded to the survey. Averaged over estimates from scientists, GR corn, cotton, and soybean were planted on 15, 90, and 88% of the hectarage in 2003, respectively. Acreage of GR corn is expected to rise, whereas only minor changes in acreage of GR cotton or soybean are expected. Weed shifts have not been observed in GR corn but have occurred in GR cotton and soybean. In GR cotton, Amaranthus, Commelina, Ipomoea, and Cyperus species as well as annual grasses were noted as becoming more problematic. Similar to cotton, Ipomoea and Commelina species are becoming more troublesome in GR soybean. In addition, in GR soybean, various winter annuals, lambsquarters species, and waterhemp species were noted as becoming more problematic. All scientists felt that weeds shifts were occurring, and two-thirds of these scientists noted that weed shifts are currently of economic concern. The scientists recommend the following to help manage weed shifts: additional herbicides in mixture with glyphosate, rotation to herbicides other than glyphosate, rotation to non–GR crops, and greater use of soil-applied herbicides.
@article{
 title = {Glyphosate-induced weed shifts},
 type = {article},
 year = {2006},
 keywords = {glyphosate,herbicide resistance},
 pages = {277-281},
 volume = {20},
 id = {e51dcf7f-237b-365d-a4cd-fb843bd72e50},
 created = {2012-01-04T21:40:41.000Z},
 file_attached = {false},
 profile_id = {1a467167-0a41-3583-a6a3-034c31031332},
 group_id = {0e532975-1a47-38a4-ace8-4fe5968bcd72},
 last_modified = {2012-01-05T12:54:25.000Z},
 tags = {GMO Weediness},
 read = {false},
 starred = {false},
 authored = {false},
 confirmed = {true},
 hidden = {false},
 source_type = {Journal Article},
 abstract = {Composition and abundance of weed populations often change in response to new or extensively used weed management practices. Glyphosate-resistant (GR) technology is one such weed management practice now used extensively. A recent survey of weed scientists was conducted to address weed shifts in GR corn, cotton, and soybean. Twelve scientists in 11 states responded to the survey. Averaged over estimates from scientists, GR corn, cotton, and soybean were planted on 15, 90, and 88% of the hectarage in 2003, respectively. Acreage of GR corn is expected to rise, whereas only minor changes in acreage of GR cotton or soybean are expected. Weed shifts have not been observed in GR corn but have occurred in GR cotton and soybean. In GR cotton, Amaranthus, Commelina, Ipomoea, and Cyperus species as well as annual grasses were noted as becoming more problematic. Similar to cotton, Ipomoea and Commelina species are becoming more troublesome in GR soybean. In addition, in GR soybean, various winter annuals, lambsquarters species, and waterhemp species were noted as becoming more problematic. All scientists felt that weeds shifts were occurring, and two-thirds of these scientists noted that weed shifts are currently of economic concern. The scientists recommend the following to help manage weed shifts: additional herbicides in mixture with glyphosate, rotation to herbicides other than glyphosate, rotation to non–GR crops, and greater use of soil-applied herbicides.},
 bibtype = {article},
 author = {Culpepper, A Stanley},
 journal = {Weed Technology}
}
Downloads: 0