Integration of growth and patterning during vascular tissue formation in <i>Arabidopsis</i>. De Rybel, B., Adibi, M., Breda, A. S., Wendrich, J. R., Smit, M. E., Novák, O., Yamaguchi, N., Yoshida, S., Van Isterdael, G., Palovaara, J., Nijsse, B., Boekschoten, M. V., Hooiveld, G., Beeckman, T., Wagner, D., Ljung, K., Fleck, C., & Weijers, D. Science, 345(6197):1255215, August, 2014.
Integration of growth and patterning during vascular tissue formation in <i>Arabidopsis</i> [link]Paper  doi  abstract   bibtex   
Coordination of cell division and pattern formation is central to tissue and organ development, particularly in plants where walls prevent cell migration. Auxin and cytokinin are both critical for division and patterning, but it is unknown how these hormones converge upon tissue development. We identify a genetic network that reinforces an early embryonic bias in auxin distribution to create a local, nonresponding cytokinin source within the root vascular tissue. Experimental and theoretical evidence shows that these cells act as a tissue organizer by positioning the domain of oriented cell divisions. We further demonstrate that the auxin-cytokinin interaction acts as a spatial incoherent feed-forward loop, which is essential to generate distinct hormonal response zones, thus establishing a stable pattern within a growing vascular tissue.
@article{de_rybel_integration_2014,
	title = {Integration of growth and patterning during vascular tissue formation in \textit{{Arabidopsis}}},
	volume = {345},
	issn = {0036-8075, 1095-9203},
	url = {https://www.sciencemag.org/lookup/doi/10.1126/science.1255215},
	doi = {10/f3p69f},
	abstract = {Coordination of cell division and pattern formation is central to tissue and organ development, particularly in plants where walls prevent cell migration. Auxin and cytokinin are both critical for division and patterning, but it is unknown how these hormones converge upon tissue development. We identify a genetic network that reinforces an early embryonic bias in auxin distribution to create a local, nonresponding cytokinin source within the root vascular tissue. Experimental and theoretical evidence shows that these cells act as a tissue organizer by positioning the domain of oriented cell divisions. We further demonstrate that the auxin-cytokinin interaction acts as a spatial incoherent feed-forward loop, which is essential to generate distinct hormonal response zones, thus establishing a stable pattern within a growing vascular tissue.},
	language = {en},
	number = {6197},
	urldate = {2021-06-08},
	journal = {Science},
	author = {De Rybel, Bert and Adibi, Milad and Breda, Alice S. and Wendrich, Jos R. and Smit, Margot E. and Novák, Ondřej and Yamaguchi, Nobutoshi and Yoshida, Saiko and Van Isterdael, Gert and Palovaara, Joakim and Nijsse, Bart and Boekschoten, Mark V. and Hooiveld, Guido and Beeckman, Tom and Wagner, Doris and Ljung, Karin and Fleck, Christian and Weijers, Dolf},
	month = aug,
	year = {2014},
	pages = {1255215},
}

Downloads: 0