Smooth Semi-Nonparametric (SNP) Estimation of the Cumulative Incidence Function. Duc, A. N. & Wolbers, M. Stat Med. doi abstract bibtex This paper presents a novel approach to estimation of the cumulative incidence function in the presence of competing risks. The underlying statistical model is specified via a mixture factorization of the joint distribution of the event type and the time to the event. The time to event distributions conditional on the event type are modeled using smooth semi-nonparametric densities. One strength of this approach is that it can handle arbitrary censoring and truncation while relying on mild parametric assumptions. A stepwise forward algorithm for model estimation and adaptive selection of smooth semi-nonparametric polynomial degrees is presented, implemented in the statistical software R, evaluated in a sequence of simulation studies, and applied to data from a clinical trial in cryptococcal meningitis. The simulations demonstrate that the proposed method frequently outperforms both parametric and nonparametric alternatives. They also support the use of 'ad hoc' asymptotic inference to derive confidence intervals. An extension to regression modeling is also presented, and its potential and challenges are discussed.
@article{duc17smo,
title = {Smooth Semi-Nonparametric ({{SNP}}) Estimation of the Cumulative Incidence Function},
abstract = {This paper presents a novel approach to estimation of the cumulative incidence function in the presence of competing risks. The underlying statistical model is specified via a mixture factorization of the joint distribution of the event type and the time to the event. The time to event distributions conditional on the event type are modeled using smooth semi-nonparametric densities. One strength of this approach is that it can handle arbitrary censoring and truncation while relying on mild parametric assumptions. A stepwise forward algorithm for model estimation and adaptive selection of smooth semi-nonparametric polynomial degrees is presented, implemented in the statistical software R, evaluated in a sequence of simulation studies, and applied to data from a clinical trial in cryptococcal meningitis. The simulations demonstrate that the proposed method frequently outperforms both parametric and nonparametric alternatives. They also support the use of 'ad hoc' asymptotic inference to derive confidence intervals. An extension to regression modeling is also presented, and its potential and challenges are discussed.},
journal = {Stat Med},
doi = {10.1002/sim.7331},
author = {Duc, Anh N. and Wolbers, Marcel},
keywords = {survival-analysis,adaptive,competing-risks},
pages = {n/a},
citeulike-article-id = {14362349},
citeulike-attachment-1 = {duc17smo.pdf; /pdf/user/harrelfe/article/14362349/1110319/duc17smo.pdf; 1d6d4a3b832e30a733149405d7beaba961e7e289},
citeulike-linkout-0 = {http://dx.doi.org/10.1002/sim.7331},
posted-at = {2017-05-24 14:28:02},
priority = {3}
}
Downloads: 0
{"_id":"Q4W6oi3Z4ujsPoQ8w","bibbaseid":"duc-wolbers-smoothseminonparametricsnpestimationofthecumulativeincidencefunction","downloads":0,"creationDate":"2018-06-23T20:06:33.390Z","title":"Smooth Semi-Nonparametric (SNP) Estimation of the Cumulative Incidence Function","author_short":["Duc, A. N.","Wolbers, M."],"year":null,"bibtype":"article","biburl":"http://hbiostat.org/bib/harrelfe.bib","bibdata":{"bibtype":"article","type":"article","title":"Smooth Semi-Nonparametric (SNP) Estimation of the Cumulative Incidence Function","abstract":"This paper presents a novel approach to estimation of the cumulative incidence function in the presence of competing risks. The underlying statistical model is specified via a mixture factorization of the joint distribution of the event type and the time to the event. The time to event distributions conditional on the event type are modeled using smooth semi-nonparametric densities. One strength of this approach is that it can handle arbitrary censoring and truncation while relying on mild parametric assumptions. A stepwise forward algorithm for model estimation and adaptive selection of smooth semi-nonparametric polynomial degrees is presented, implemented in the statistical software R, evaluated in a sequence of simulation studies, and applied to data from a clinical trial in cryptococcal meningitis. The simulations demonstrate that the proposed method frequently outperforms both parametric and nonparametric alternatives. They also support the use of 'ad hoc' asymptotic inference to derive confidence intervals. An extension to regression modeling is also presented, and its potential and challenges are discussed.","journal":"Stat Med","doi":"10.1002/sim.7331","author":[{"propositions":[],"lastnames":["Duc"],"firstnames":["Anh","N."],"suffixes":[]},{"propositions":[],"lastnames":["Wolbers"],"firstnames":["Marcel"],"suffixes":[]}],"keywords":"survival-analysis,adaptive,competing-risks","pages":"n/a","citeulike-article-id":"14362349","citeulike-attachment-1":"duc17smo.pdf; /pdf/user/harrelfe/article/14362349/1110319/duc17smo.pdf; 1d6d4a3b832e30a733149405d7beaba961e7e289","citeulike-linkout-0":"http://dx.doi.org/10.1002/sim.7331","posted-at":"2017-05-24 14:28:02","priority":"3","bibtex":"@article{duc17smo,\n title = {Smooth Semi-Nonparametric ({{SNP}}) Estimation of the Cumulative Incidence Function},\n abstract = {This paper presents a novel approach to estimation of the cumulative incidence function in the presence of competing risks. The underlying statistical model is specified via a mixture factorization of the joint distribution of the event type and the time to the event. The time to event distributions conditional on the event type are modeled using smooth semi-nonparametric densities. One strength of this approach is that it can handle arbitrary censoring and truncation while relying on mild parametric assumptions. A stepwise forward algorithm for model estimation and adaptive selection of smooth semi-nonparametric polynomial degrees is presented, implemented in the statistical software R, evaluated in a sequence of simulation studies, and applied to data from a clinical trial in cryptococcal meningitis. The simulations demonstrate that the proposed method frequently outperforms both parametric and nonparametric alternatives. They also support the use of 'ad hoc' asymptotic inference to derive confidence intervals. An extension to regression modeling is also presented, and its potential and challenges are discussed.},\n journal = {Stat Med},\n doi = {10.1002/sim.7331},\n author = {Duc, Anh N. and Wolbers, Marcel},\n keywords = {survival-analysis,adaptive,competing-risks},\n pages = {n/a},\n citeulike-article-id = {14362349},\n citeulike-attachment-1 = {duc17smo.pdf; /pdf/user/harrelfe/article/14362349/1110319/duc17smo.pdf; 1d6d4a3b832e30a733149405d7beaba961e7e289},\n citeulike-linkout-0 = {http://dx.doi.org/10.1002/sim.7331},\n posted-at = {2017-05-24 14:28:02},\n priority = {3}\n}\n\n","author_short":["Duc, A. N.","Wolbers, M."],"key":"duc17smo","id":"duc17smo","bibbaseid":"duc-wolbers-smoothseminonparametricsnpestimationofthecumulativeincidencefunction","role":"author","urls":{},"keyword":["survival-analysis","adaptive","competing-risks"],"downloads":0},"search_terms":["smooth","semi","nonparametric","snp","estimation","cumulative","incidence","function","duc","wolbers"],"keywords":["adaptive","competing-risks","survival-analysis"],"authorIDs":[],"dataSources":["mEQakjn8ggpMsnGJi"]}