Vibration-synchronized magnetic resonance imaging for the detection of myocardial elasticity changes. Elgeti, T., Tzschätzsch, H., Hirsch, S., Krefting, D., Klatt, D., Niendorf, d, T., Braun, J., & Sack, I. Magnetic Resonance in Medicine, 67(4):919-924, 2012. cited By (since 1996)0
Vibration-synchronized magnetic resonance imaging for the detection of myocardial elasticity changes [link]Paper  doi  abstract   bibtex   
Vibration synchronized magnetic resonance imaging of harmonically oscillating tissue interfaces is proposed for cardiac magnetic resonance elastography. The new approach exploits cardiac triggered cine imaging synchronized with extrinsic harmonic stimulation (f = 22.83 Hz) to display oscillatory tissue deformations in magnitude images. Oscillations are analyzed by intensity threshold-based image processing to track wave amplitude variations over the cardiac cycle. In agreement to literature data, results in 10 volunteers showed that endocardial wave amplitudes during systole (0.13 ± 0.07 mm) were significantly lower than during diastole (0.34 ± 0.14 mm, P < 0.001). Wave amplitudes were found to decrease 117 ± 40 ms before myocardial contraction and to increase 75 ± 31 ms before myocardial relaxation. Vibration synchronized magnetic resonance imaging improves the temporal resolution of magnetic resonance elastography as it overcomes the use of extra motion encoding gradients, is less sensitive to susceptibility artifacts, and does not suffer from dynamic range constraints frequently encountered in phase-based magnetic resonance elastography. © 2011 Wiley Periodicals, Inc.
@article{ Elgeti2012919,
  author = {Elgeti, T.a  and Tzschätzsch, H.a  and Hirsch, S.a  and Krefting, D.b  and Klatt, D.a  and Niendorf, T.c  d  and Braun, J.b  and Sack, I.a },
  title = {Vibration-synchronized magnetic resonance imaging for the detection of myocardial elasticity changes},
  journal = {Magnetic Resonance in Medicine},
  year = {2012},
  volume = {67},
  number = {4},
  pages = {919-924},
  note = {cited By (since 1996)0},
  url = {http://www.scopus.com/inward/record.url?eid=2-s2.0-84859108999&partnerID=40&md5=7362cee613509db3383e8b81971bcf21},
  affiliation = {Department of Radiology, CharitéUniversitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany; Institute of Medical Informatics, CharitéUniversitätsmedizin Berlin, Campus Benjamin Franklin, 12200 Berlin, Germany; Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbruck Center for Molecular Medicine, 13125 Berlin, Germany; Experimental and Clinical Research Center, Charité Medical Faculty, Max-Delbruck Center for Molecular Medicine, Berlin, Germany},
  abstract = {Vibration synchronized magnetic resonance imaging of harmonically oscillating tissue interfaces is proposed for cardiac magnetic resonance elastography. The new approach exploits cardiac triggered cine imaging synchronized with extrinsic harmonic stimulation (f = 22.83 Hz) to display oscillatory tissue deformations in magnitude images. Oscillations are analyzed by intensity threshold-based image processing to track wave amplitude variations over the cardiac cycle. In agreement to literature data, results in 10 volunteers showed that endocardial wave amplitudes during systole (0.13 ± 0.07 mm) were significantly lower than during diastole (0.34 ± 0.14 mm, P < 0.001). Wave amplitudes were found to decrease 117 ± 40 ms before myocardial contraction and to increase 75 ± 31 ms before myocardial relaxation. Vibration synchronized magnetic resonance imaging improves the temporal resolution of magnetic resonance elastography as it overcomes the use of extra motion encoding gradients, is less sensitive to susceptibility artifacts, and does not suffer from dynamic range constraints frequently encountered in phase-based magnetic resonance elastography. © 2011 Wiley Periodicals, Inc.},
  author_keywords = {cardiac elastography;  heart contraction;  MRE;  myocardial relaxation;  shear modulus;  shear waves;  time harmonic vibrations},
  keywords = {adult;  article;  cineradiography;  diastole;  elasticity;  elastography;  endocardium;  heart contraction;  heart cycle;  heart muscle cell;  human;  human experiment;  image processing;  male;  motion;  normal human;  nuclear magnetic resonance imaging;  oscillation;  systole;  vibration;  waveform, Adult;  Artifacts;  Elastic Modulus;  Elasticity Imaging Techniques;  Humans;  Magnetic Resonance Imaging, Cine;  Male;  Middle Aged;  Myocardial Contraction;  Statistics, Nonparametric;  Ventricular Function, Left;  Vibration},
  references = {Fung, Y.-C., (1993) Biomechanics, , New York: Springer; Konofagou, E.E., D'hooge, J., Ophir, J., Myocardial elastography - A feasibility study in vivo (2002) Ultrasound in Medicine and Biology, 28 (4), pp. 475-482. , DOI 10.1016/S0301-5629(02)00488-X, PII S030156290200488X; Bouchard, R.R., Hsu, S.J., Wolf, P.D., Trahey, G.E., In vivo cardiac, acoustic-radiation-force-driven, shear wave velocimetry (2009) Ultrason Imaging, 31, pp. 201-213; Kanai, H., Propagation of spontaneously actuated pulsive vibration in human heart wall and in vivo viscoelasticity estimation (2005) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52 (11), pp. 1931-1942. , DOI 10.1109/TUFFC.2005.1561662; Nenadic, I.Z., Urban, M.W., Mitchell, S.A., Greenleaf, J.F., Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids (2011) Phys Med Biol, 56, pp. 2245-2264; Robert, B., Sinkus, R., Gennisson, J.-L., Fink, M., Application of DENSE-MR-elastography to the human heart (2009) Magn Reson Med, 62, pp. 1155-1163; Kolipaka, A., McGee, K.P., Araoz, P.A., Glaser, K.J., Manduca, A., Romano, A.J., Ehman, R.L., MR elastography as a method for the assessment of myocardial stiffness: Comparison with an established pressure-volume model in a left ventricular model of the heart (2009) Magn Reson Med, 62, pp. 135-140; Sack, I., Rump, J., Elgeti, T., Samani, A., Braun, J., MR elastography of the human heart: Noninvasive assessment of myocardial elasticity changes by shear wave amplitude variations (2009) Magn Reson Med, 61, pp. 668-677; Rump, J., Klatt, D., Braun, J., Warmuth, C., Sack, I., Fractional encoding of harmonic motions in MR elastography (2007) Magnetic Resonance in Medicine, 57 (2), pp. 388-395. , DOI 10.1002/mrm.21152; Kolipaka, A., Araoz, P.A., McGee, K.P., Manduca, A., Ehman, R.L., Magnetic resonance elastography as a method for the assessment of effective myocardial stiffness throughout the cardiac cycle (2010) Magn Reson Med, 64, pp. 862-870; Plewes, D.B., Betty, I., Urchuk, S.N., Soutar, I., Visualizing tissue compliance with MR imaging (1995) J Magn Reson Imaging: JMRI, 5, pp. 733-738; Muthupillai, R., Lomas, D.J., Rossman, P.J., Greenleaf, J.F., Manduca, A., Ehman, R.L., Magnetic resonance elastography by direct visualization of propagating acoustic strain waves (1995) Science, 269, pp. 1854-1857; Elgeti, T., Rump, J., Hamhaber, U., Papazoglou, S., Hamm, B., Braun, J., Sack, I., Cardiac magnetic resonance elastography. Initial results (2008) Invest Radiol, 43, pp. 762-772; Elgeti, T., Laule, M., Kaufels, N., Schnorr, J., Hamm, B., Samani, A., Braun, J., Sack, I., Cardiac MR elastography: Comparison with left ventricular pressure measurement (2009) J Cardiovasc Magn Reson, 11, p. 44; Elgeti, T., Beling, M., Hamm, B., Braun, J., Sack, I., Elasticity-based determination of isovolumetric phases in the human heart (2010) J Cardiovasc Magn Reson, 12, p. 60; Elgeti, T., Beling, M., Hamm, B., Braun, J., Sack, I., Cardiac magnetic resonance elastography: Toward the diagnosis of abnormal myocardial relaxation (2010) Invest Radiol, 45, pp. 782-787; Moran, P.R., A flow velocity zeugmatographic interlace for NMR imaging in humans (1982) Magn Reson Imaging, 1, pp. 197-203; Feinberg, D.A., Crooks, L., Hoenninger III, J., Pulsatile blood velocity in human arteries displayed by magnetic resonance imaging (1984) Radiology, 153 (1), pp. 177-180; Achenbach, J.D., (1999) Wave Propagation in Elastic Solids, , Amsterdam: Elsevier; Tzschätzsch, H., Elgeti, T., Rettig, K., Klaua, R., Schultz, M., Kargel, C., Braun, J., Sack, I., In vivo time harmonic elastography of the human heart (2012) Ultrasound Med Biol, 38, pp. 214-222; Scheffler, K., Lehnhardt, S., Principles and applications of balanced SSFP techniques (2003) European Radiology, 13 (11), pp. 2409-2418. , DOI 10.1007/s00330-003-1957-x; Huber, A., Bauner, K., Wintersperger, B.J., Reeder, S.B., Stadie, F., Mueller, E., Schmidt, M., Schoenberg, S.O., Phase-Sensitive Inversion Recovery (PSIR) single-shot TrueFISP for assessment of myocardial infarction at 3 tesla (2006) Investigative Radiology, 41 (2), pp. 148-153. , DOI 10.1097/01.rli.0000195843.97582.f4, PII 0000442420060200000013; Glaser, K.J., Felmlee, J.P., Manduca, A., Ehman, R.L., Shear Stiffness Estimation Using Intravoxel Phase Dispersion in Magnetic Resonance Elastography (2003) Magnetic Resonance in Medicine, 50 (6), pp. 1256-1265. , DOI 10.1002/mrm.10641; Glaser, K.J., Felmlee, J.P., Manduca, A., Mariappan, Y.K., Ehman, R.L., Stiffness-weighted magnetic resonance imaging (2006) Magnetic Resonance in Medicine, 55 (1), pp. 59-67. , DOI 10.1002/mrm.20748; Ehman, E.C., Rossman, P.J., Kruse, S.A., Sahakian, A.V., Glaser, K.J., Vibration safety limits for magnetic resonance elastography (2008) Physics in Medicine and Biology, 53 (4), pp. 925-935. , DOI 10.1088/0031-9155/53/4/007, PII S0031915508585149; Manduca, A., Oliphant, T.E., Dresner, M.A., Mahowald, J.L., Kruse, S.A., Amromin, E., Felmlee, J.P., Ehman, R.L., Magnetic resonance elastography: Non-invasive mapping of tissue elasticity (2001) Medical Image Analysis, 5 (4), pp. 237-254. , DOI 10.1016/S1361-8415(00)00039-6, PII S1361841500000396; Papazoglou, S., Hamhaber, U., Braun, J., Sack, I., Algebraic Helmholtz inversion in planar magnetic resonance elastography (2008) Physics in Medicine and Biology, 53 (12), pp. 3147-3158. , DOI 10.1088/0031-9155/53/12/005, PII S003191550873416X; Chenevert, T.L., Skovoroda, A.R., O'Donnell, M., Emelianov, S.Y., Elasticity reconstructive imaging by means of stimulated echo MRI (1998) Magnetic Resonance in Medicine, 39 (3), pp. 482-490. , DOI 10.1002/mrm.1910390319; Papazoglou, S., Xu, C., Hamhaber, U., Siebert, E., Bohner, G., Klingebiel, R., Braun, J., Sack, I., Scatter-based magnetic resonance elastography (2009) Phys Med Biol, 54, pp. 2229-2241; Spencer, K.T., Kirkpatrick, J.N., Mor-Avi, V., Decara, J.M., Lang, R.M., Age dependency of the Tei index of myocardial performance (2004) Journal of the American Society of Echocardiography, 17 (4), pp. 350-352. , DOI 10.1016/j.echo.2004.01.003, PII S0894731704000549; Vitanis, V., Manka, R., Giese, D., Pedersen, H., Plein, S., Boesiger, P., Kozerke, S., High resolution three-dimensional cardiac perfusion imaging using compartment-based k-t principal component analysis (2011) Magn Reson Med, 65, pp. 575-587},
  correspondence_address1 = {Sack, I.; Department of Radiology, CharitéUniversitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany; email: ingolf.sack@charite.de},
  issn = {07403194},
  coden = {MRMEE},
  doi = {10.1002/mrm.24185},
  pubmed_id = {22294295},
  language = {English},
  abbrev_source_title = {Magn. Reson. Med.},
  document_type = {Article},
  source = {Scopus}
}

Downloads: 0