Exon Definition Facilitates Reliable Control of Alternative Splicing in the RON Proto-Oncogene. Enculescu, M., Braun, S., Thonta Setty, S., Busch, A., Zarnack, K., König, J., & Legewie, S. Biophysical journal, 118(8):2027–2041, United States, 04, 2020.
Paper doi abstract bibtex Alternative splicing is a key step in eukaryotic gene expression that allows for the production of multiple transcript and protein isoforms from the same gene. Even though splicing is perturbed in many diseases, we currently lack insights into regulatory mechanisms promoting its precision and efficiency. We analyze high-throughput mutagenesis data obtained for an alternatively spliced exon in the proto-oncogene RON and determine the functional units that control this splicing event. Using mathematical modeling of distinct splicing mechanisms, we show that alternative splicing is based in RON on a so-called "exon definition" mechanism. Here, the recognition of the adjacent exons by the spliceosome is required for removal of an intron. We use our model to analyze the differences between the exon and intron definition scenarios and find that exon definition prevents the accumulation of deleterious, partially spliced retention products during alternative splicing regulation. Furthermore, it modularizes splicing control, as multiple regulatory inputs are integrated into a common net input, irrespective of the location and nature of the corresponding cis-regulatory elements in the pre-messenger RNA. Our analysis suggests that exon definition promotes robust and reliable splicing outcomes in RON splicing.
@article{enculescu2020definition,
abstract = {Alternative splicing is a key step in eukaryotic gene expression that allows for the production of multiple transcript and protein isoforms from the same gene. Even though splicing is perturbed in many diseases, we currently lack insights into regulatory mechanisms promoting its precision and efficiency. We analyze high-throughput mutagenesis data obtained for an alternatively spliced exon in the proto-oncogene RON and determine the functional units that control this splicing event. Using mathematical modeling of distinct splicing mechanisms, we show that alternative splicing is based in RON on a so-called "exon definition" mechanism. Here, the recognition of the adjacent exons by the spliceosome is required for removal of an intron. We use our model to analyze the differences between the exon and intron definition scenarios and find that exon definition prevents the accumulation of deleterious, partially spliced retention products during alternative splicing regulation. Furthermore, it modularizes splicing control, as multiple regulatory inputs are integrated into a common net input, irrespective of the location and nature of the corresponding cis-regulatory elements in the pre-messenger RNA. Our analysis suggests that exon definition promotes robust and reliable splicing outcomes in RON splicing.},
added-at = {2025-01-21T10:24:08.000+0100},
address = {United States},
author = {Enculescu, Mihaela and Braun, Simon and Thonta Setty, Samarth and Busch, Anke and Zarnack, Kathi and König, Julian and Legewie, Stefan},
biburl = {https://www.bibsonomy.org/bibtex/259e0589afb6af2659bf58ceeacc14914/melinakl},
comment = {32336349[pmid]
PMC7175406[pmcid]},
description = {Exon Definition Facilitates Reliable Control of Alternative Splicing in the RON Proto-Oncogene - PubMed},
doi = {10.1016/j.bpj.2020.02.022},
interhash = {58fc7b358446a834d45d5ee59fce8750},
intrahash = {59e0589afb6af2659bf58ceeacc14914},
issn = {00063495},
journal = {Biophysical journal},
keywords = {ZarnackGroup},
month = {04},
number = 8,
pages = {2027--2041},
privnote = {32336349[pmid]
PMC7175406[pmcid]},
timestamp = {2025-01-21T10:24:08.000+0100},
title = {Exon Definition Facilitates Reliable Control of Alternative Splicing in the RON Proto-Oncogene},
url = {https://pubmed.ncbi.nlm.nih.gov/32336349},
volume = 118,
year = 2020
}
Downloads: 0
{"_id":"dPEBBEbt7AxPnTf9X","bibbaseid":"enculescu-braun-thontasetty-busch-zarnack-knig-legewie-exondefinitionfacilitatesreliablecontrolofalternativesplicingintheronprotooncogene-2020","author_short":["Enculescu, M.","Braun, S.","Thonta Setty, S.","Busch, A.","Zarnack, K.","König, J.","Legewie, S."],"bibdata":{"bibtype":"article","type":"article","abstract":"Alternative splicing is a key step in eukaryotic gene expression that allows for the production of multiple transcript and protein isoforms from the same gene. Even though splicing is perturbed in many diseases, we currently lack insights into regulatory mechanisms promoting its precision and efficiency. We analyze high-throughput mutagenesis data obtained for an alternatively spliced exon in the proto-oncogene RON and determine the functional units that control this splicing event. Using mathematical modeling of distinct splicing mechanisms, we show that alternative splicing is based in RON on a so-called \"exon definition\" mechanism. Here, the recognition of the adjacent exons by the spliceosome is required for removal of an intron. We use our model to analyze the differences between the exon and intron definition scenarios and find that exon definition prevents the accumulation of deleterious, partially spliced retention products during alternative splicing regulation. Furthermore, it modularizes splicing control, as multiple regulatory inputs are integrated into a common net input, irrespective of the location and nature of the corresponding cis-regulatory elements in the pre-messenger RNA. Our analysis suggests that exon definition promotes robust and reliable splicing outcomes in RON splicing.","added-at":"2025-01-21T10:24:08.000+0100","address":"United States","author":[{"propositions":[],"lastnames":["Enculescu"],"firstnames":["Mihaela"],"suffixes":[]},{"propositions":[],"lastnames":["Braun"],"firstnames":["Simon"],"suffixes":[]},{"propositions":[],"lastnames":["Thonta","Setty"],"firstnames":["Samarth"],"suffixes":[]},{"propositions":[],"lastnames":["Busch"],"firstnames":["Anke"],"suffixes":[]},{"propositions":[],"lastnames":["Zarnack"],"firstnames":["Kathi"],"suffixes":[]},{"propositions":[],"lastnames":["König"],"firstnames":["Julian"],"suffixes":[]},{"propositions":[],"lastnames":["Legewie"],"firstnames":["Stefan"],"suffixes":[]}],"biburl":"https://www.bibsonomy.org/bibtex/259e0589afb6af2659bf58ceeacc14914/melinakl","comment":"32336349[pmid] PMC7175406[pmcid]","description":"Exon Definition Facilitates Reliable Control of Alternative Splicing in the RON Proto-Oncogene - PubMed","doi":"10.1016/j.bpj.2020.02.022","interhash":"58fc7b358446a834d45d5ee59fce8750","intrahash":"59e0589afb6af2659bf58ceeacc14914","issn":"00063495","journal":"Biophysical journal","keywords":"ZarnackGroup","month":"04","number":"8","pages":"2027–2041","privnote":"32336349[pmid] PMC7175406[pmcid]","timestamp":"2025-01-21T10:24:08.000+0100","title":"Exon Definition Facilitates Reliable Control of Alternative Splicing in the RON Proto-Oncogene","url":"https://pubmed.ncbi.nlm.nih.gov/32336349","volume":"118","year":"2020","bibtex":"@article{enculescu2020definition,\n abstract = {Alternative splicing is a key step in eukaryotic gene expression that allows for the production of multiple transcript and protein isoforms from the same gene. Even though splicing is perturbed in many diseases, we currently lack insights into regulatory mechanisms promoting its precision and efficiency. We analyze high-throughput mutagenesis data obtained for an alternatively spliced exon in the proto-oncogene RON and determine the functional units that control this splicing event. Using mathematical modeling of distinct splicing mechanisms, we show that alternative splicing is based in RON on a so-called \"exon definition\" mechanism. Here, the recognition of the adjacent exons by the spliceosome is required for removal of an intron. We use our model to analyze the differences between the exon and intron definition scenarios and find that exon definition prevents the accumulation of deleterious, partially spliced retention products during alternative splicing regulation. Furthermore, it modularizes splicing control, as multiple regulatory inputs are integrated into a common net input, irrespective of the location and nature of the corresponding cis-regulatory elements in the pre-messenger RNA. Our analysis suggests that exon definition promotes robust and reliable splicing outcomes in RON splicing.},\n added-at = {2025-01-21T10:24:08.000+0100},\n address = {United States},\n author = {Enculescu, Mihaela and Braun, Simon and Thonta Setty, Samarth and Busch, Anke and Zarnack, Kathi and König, Julian and Legewie, Stefan},\n biburl = {https://www.bibsonomy.org/bibtex/259e0589afb6af2659bf58ceeacc14914/melinakl},\n comment = {32336349[pmid]\r\nPMC7175406[pmcid]},\n description = {Exon Definition Facilitates Reliable Control of Alternative Splicing in the RON Proto-Oncogene - PubMed},\n doi = {10.1016/j.bpj.2020.02.022},\n interhash = {58fc7b358446a834d45d5ee59fce8750},\n intrahash = {59e0589afb6af2659bf58ceeacc14914},\n issn = {00063495},\n journal = {Biophysical journal},\n keywords = {ZarnackGroup},\n month = {04},\n number = 8,\n pages = {2027--2041},\n privnote = {32336349[pmid]\r\nPMC7175406[pmcid]},\n timestamp = {2025-01-21T10:24:08.000+0100},\n title = {Exon Definition Facilitates Reliable Control of Alternative Splicing in the RON Proto-Oncogene},\n url = {https://pubmed.ncbi.nlm.nih.gov/32336349},\n volume = 118,\n year = 2020\n}\n\n","author_short":["Enculescu, M.","Braun, S.","Thonta Setty, S.","Busch, A.","Zarnack, K.","König, J.","Legewie, S."],"key":"enculescu2020definition","id":"enculescu2020definition","bibbaseid":"enculescu-braun-thontasetty-busch-zarnack-knig-legewie-exondefinitionfacilitatesreliablecontrolofalternativesplicingintheronprotooncogene-2020","role":"author","urls":{"Paper":"https://pubmed.ncbi.nlm.nih.gov/32336349"},"keyword":["ZarnackGroup"],"metadata":{"authorlinks":{}}},"bibtype":"article","biburl":"http://www.bibsonomy.org/bib/author/braun?items=1000","dataSources":["moGHosEp2wsfFe7LR"],"keywords":["zarnackgroup"],"search_terms":["exon","definition","facilitates","reliable","control","alternative","splicing","ron","proto","oncogene","enculescu","braun","thonta setty","busch","zarnack","könig","legewie"],"title":"Exon Definition Facilitates Reliable Control of Alternative Splicing in the RON Proto-Oncogene","year":2020}