Single and two-scale sharp-interface models for concrete carbonation - Asymptotics and numerical approximation. Evans, J., Fernández, A., & Muntean, A. Multiscale Modeling and Simulation, 2012.
abstract   bibtex   
We investigate the fast-reaction asymptotics for a one-dimensional reaction-diffusion system describing the penetration of the carbonation reaction in concrete. The technique of matchedasymptotics is used to show that the reaction-diffusion system leads to two distinct classes of sharpinterface models. These correspond to different scalings of a small parameter ε representing the fast-reaction and defined here as the ratio between the characteristic scale of diffusion for the fastest species and the characteristic scale of the carbonation reaction. We explore three conceptually different diffusion regimes in terms of the behavior of the effective diffusivities for the driving chemical species. The limiting models include one-phase and two-phase generalized Stefan moving-boundary problems as well as a nonstandard two-scale (micro-macro) moving-boundary problem - the main result of the paper. Numerical results, supporting the asymptotics, illustrate the behavior of the concentration profiles for relevant parameter regimes. © 2012 Society for Industrial and Applied Mathematics.
@article{
 title = {Single and two-scale sharp-interface models for concrete carbonation - Asymptotics and numerical approximation},
 type = {article},
 year = {2012},
 identifiers = {[object Object]},
 keywords = {Concrete carbonation,Fast-reaction asymptotics,Matched asymptotics,Numerical approximation of reaction fronts,Reaction layer analysis,Two-scale sharp-interface models},
 volume = {10},
 id = {9ce5a75b-f6b5-322a-8b2d-967083709765},
 created = {2019-08-23T19:37:41.527Z},
 file_attached = {false},
 profile_id = {b73905ef-6774-3e9d-ac7e-8d5666c2a46e},
 last_modified = {2019-08-23T19:37:41.527Z},
 read = {false},
 starred = {false},
 authored = {true},
 confirmed = {false},
 hidden = {false},
 private_publication = {false},
 abstract = {We investigate the fast-reaction asymptotics for a one-dimensional reaction-diffusion system describing the penetration of the carbonation reaction in concrete. The technique of matchedasymptotics is used to show that the reaction-diffusion system leads to two distinct classes of sharpinterface models. These correspond to different scalings of a small parameter ε representing the fast-reaction and defined here as the ratio between the characteristic scale of diffusion for the fastest species and the characteristic scale of the carbonation reaction. We explore three conceptually different diffusion regimes in terms of the behavior of the effective diffusivities for the driving chemical species. The limiting models include one-phase and two-phase generalized Stefan moving-boundary problems as well as a nonstandard two-scale (micro-macro) moving-boundary problem - the main result of the paper. Numerical results, supporting the asymptotics, illustrate the behavior of the concentration profiles for relevant parameter regimes. © 2012 Society for Industrial and Applied Mathematics.},
 bibtype = {article},
 author = {Evans, J.D. and Fernández, A. and Muntean, A.},
 journal = {Multiscale Modeling and Simulation},
 number = {3}
}
Downloads: 0