Trophic dynamics in urban communities. Faeth, S., Warren, P. S., Shochat, E., & Marussich, W. BioScience, 2005.
abstract   bibtex   
Human activities dramatically change the abundance, diversity, and composition of species. However, little is known about how the most intense human activity, urbanization, alters food webs and trophic structure in biological communities. Studies of the Phoenix area, situated amid the Sonoran Desert, reveal some surprising alterations in the control of trophic dynamics. Species composition is radically altered, and resource subsidies increase and stabilize productivity. Changes in productivity dampen seasonal and yearly fluctuations in species diversity, elevate abundances, and alter feeding behaviors of some key urban species. In urban systems—in contrast to the trophic systems in outlying deserts, which are dominated by limiting resources—predation by birds becomes the dominant force controlling arthropods on plants. Reduced predation risk elevates the abundance of urban birds and alters their foraging behavior such that they exert increased top-down effects on arthropods. Shifts in control of food web dynamics are probably common in urban ecosystems, and are influenced by complex human social processes and feedbacks.
@article{faeth_trophic_2005-1,
	title = {Trophic dynamics in urban communities},
	volume = {55},
	abstract = {Human activities dramatically change the abundance, diversity, and composition of species. However, little is known about how the most intense human activity, urbanization, alters food webs and trophic structure in biological communities. Studies of the Phoenix area, situated amid the Sonoran Desert, reveal some surprising alterations in the control of trophic dynamics. Species composition is radically altered, and resource subsidies increase and stabilize productivity. Changes in productivity dampen seasonal and yearly fluctuations in species diversity, elevate abundances, and alter feeding behaviors of some key urban species. In urban systems—in contrast to the trophic systems in outlying deserts, which are dominated by limiting resources—predation by birds becomes the dominant force controlling arthropods on plants. Reduced predation risk elevates the abundance of urban birds and alters their foraging behavior such that they exert increased top-down effects on arthropods. Shifts in control of food web dynamics are probably common in urban ecosystems, and are influenced by complex human social processes and feedbacks.},
	number = {5},
	journal = {BioScience},
	author = {Faeth, S.H. and Warren, P. S. and Shochat, E. and Marussich, W.},
	year = {2005},
	keywords = {BES, urban, dynamics}
}

Downloads: 0