Polymer Analysis in the Second Dimension: Preliminary Studies for the Characterization of Polymers with 2D MS. Floris, F., Vallotto, C., Chiron, L., Lynch, A., Barrow, M., Delsuc, M., & O'Connor, P. Analytical Chemistry, 2017.
doi  abstract   bibtex   
© 2017 American Chemical Society. Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FTICR MS or 2D MS) allows direct correlation between precursor and fragment ions without isolation prior to fragmentation. The method has been optimized for the analysis of complex mixtures and used so far for the analysis of small molecules and peptides obtained by tryptic digestion of proteins and entire proteins. In this work, a 2D MS method is developed to characterize complex mixtures of polymers using infrared multiphoton decay (IRMPD) and electron capture dissociation (ECD) as fragmentation techniques, and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), Polysorbate 80, and poly(methyl methacrylate) (PMMA) as analytes. The use of 2D MS allowed generation of fragment m/z values for all the compounds in the mixture at once and allowed tandem mass spectrometry of species very close in m/z that would have been difficult to isolate with a quadrupole for standard MS/MS. Furthermore, the use of unique features of 2D MS such as the extraction of neutral-loss lines allowed the successful assignment of peaks from low abundant species that would have been more difficult with standard MS/MS. For all the samples, the amount of information obtained with 2D MS was comparable with what obtained with multiple 1D MS/MS experiments targeted on each individual component within each mixture but required a single experiment of about 20-40 min.
@article{
 title = {Polymer Analysis in the Second Dimension: Preliminary Studies for the Characterization of Polymers with 2D MS},
 type = {article},
 year = {2017},
 volume = {89},
 id = {bf6cabd4-39b3-312f-b02b-30b84834ad97},
 created = {2019-02-14T18:15:55.475Z},
 file_attached = {false},
 profile_id = {9f6c4084-7a51-3e30-8518-5a3d275e6797},
 last_modified = {2019-02-14T18:15:55.475Z},
 read = {false},
 starred = {false},
 authored = {true},
 confirmed = {false},
 hidden = {false},
 private_publication = {false},
 abstract = {© 2017 American Chemical Society. Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FTICR MS or 2D MS) allows direct correlation between precursor and fragment ions without isolation prior to fragmentation. The method has been optimized for the analysis of complex mixtures and used so far for the analysis of small molecules and peptides obtained by tryptic digestion of proteins and entire proteins. In this work, a 2D MS method is developed to characterize complex mixtures of polymers using infrared multiphoton decay (IRMPD) and electron capture dissociation (ECD) as fragmentation techniques, and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), Polysorbate 80, and poly(methyl methacrylate) (PMMA) as analytes. The use of 2D MS allowed generation of fragment m/z values for all the compounds in the mixture at once and allowed tandem mass spectrometry of species very close in m/z that would have been difficult to isolate with a quadrupole for standard MS/MS. Furthermore, the use of unique features of 2D MS such as the extraction of neutral-loss lines allowed the successful assignment of peaks from low abundant species that would have been more difficult with standard MS/MS. For all the samples, the amount of information obtained with 2D MS was comparable with what obtained with multiple 1D MS/MS experiments targeted on each individual component within each mixture but required a single experiment of about 20-40 min.},
 bibtype = {article},
 author = {Floris, F. and Vallotto, C. and Chiron, L. and Lynch, A.M. and Barrow, M.P. and Delsuc, M.-A. and O'Connor, P.B.},
 doi = {10.1021/acs.analchem.7b02086},
 journal = {Analytical Chemistry},
 number = {18}
}

Downloads: 0