Visual categorization and the primate prefrontal cortex: Neurophysiology and behavior. Freedman, D. J, Riesenhuber, M., Poggio, T., & Miller, E. K J Neurophysiol, 88(2):929-41, 2002. abstract bibtex The ability to group stimuli into meaningful categories is a fundamental cognitive process. To explore its neuronal basis, we trained monkeys to categorize computer-generated stimuli as "cats" and "dogs." A morphing system was used to systematically vary stimulus shape and precisely define a category boundary. Psychophysical testing and analysis of eye movements suggest that the monkeys categorized the stimuli by attending to multiple stimulus features. Neuronal activity in the lateral prefrontal cortex reflected the category of visual stimuli and changed with learning when a monkey was retrained with the same stimuli assigned to new categories. Further, many neurons showed activity that appeared to reflect the monkey's decision about whether two stimuli were from the same category or not. These results suggest that the lateral prefrontal cortex is an important part of the neuronal circuitry underlying category learning and category-based behaviors.
@Article{Freedman2002,
author = {David J Freedman and Maximilian Riesenhuber and Tomaso Poggio and Earl K Miller},
journal = {J Neurophysiol},
title = {Visual categorization and the primate prefrontal cortex: {N}europhysiology and behavior.},
year = {2002},
number = {2},
pages = {929-41},
volume = {88},
abstract = {The ability to group stimuli into meaningful categories is a fundamental
cognitive process. To explore its neuronal basis, we trained monkeys
to categorize computer-generated stimuli as "cats" and "dogs." A
morphing system was used to systematically vary stimulus shape and
precisely define a category boundary. Psychophysical testing and
analysis of eye movements suggest that the monkeys categorized the
stimuli by attending to multiple stimulus features. Neuronal activity
in the lateral prefrontal cortex reflected the category of visual
stimuli and changed with learning when a monkey was retrained with
the same stimuli assigned to new categories. Further, many neurons
showed activity that appeared to reflect the monkey's decision about
whether two stimuli were from the same category or not. These results
suggest that the lateral prefrontal cortex is an important part of
the neuronal circuitry underlying category learning and category-based
behaviors.},
keywords = {Computing Methodologies, Human, Language, Learning, Mental Processes, Models, Theoretical, Stochastic Processes, Support, U.S. Gov't, Non-P.H.S., Cognition, Linguistics, Neural Networks (Computer), Practice (Psychology), Non-U.S. Gov't, Memory, Psychological, Task Performance and Analysis, Time Factors, Visual Perception, Adult, Attention, Discrimination Learning, Female, Male, Short-Term, Mental Recall, Orientation, Pattern Recognition, Visual, Perceptual Masking, Reading, Concept Formation, Form Perception, Animals, Corpus Striatum, Shrews, P.H.S., Visual Cortex, Visual Pathways, Acoustic Stimulation, Auditory Cortex, Auditory Perception, Cochlea, Ear, Gerbillinae, Glycine, Hearing, Neurons, Space Perception, Strychnine, Adolescent, Decision Making, Reaction Time, Astrocytoma, Brain Mapping, Brain Neoplasms, Cerebral Cortex, Electric Stimulation, Electrophysiology, Epilepsy, Temporal Lobe, Evoked Potentials, Frontal Lobe, Noise, Parietal Lobe, Scalp, Child, Language Development, Psycholinguistics, Brain, Perception, Speech, Vocalization, Animal, Discrimination (Psychology), Hippocampus, Rats, Calcium, Chelating Agents, Excitatory Postsynaptic Potentials, Glutamic Acid, Guanosine Diphosphate, In Vitro, Neuronal Plasticity, Pyramidal Cells, Receptors, AMPA, Metabotropic Glutamate, N-Methyl-D-Aspartate, Somatosensory Cortex, Synapses, Synaptic Transmission, Thionucleotides, Action Potentials, Calcium Channels, L-Type, Electric Conductivity, Entorhinal Cortex, Neurological, Long-Evans, Infant, Mathematics, Statistics, Probability Learning, Problem Solving, Psychophysics, Association Learning, Child Psychology, Habituation (Psychophysiology), Probability Theory, Analysis of Variance, Semantics, Symbolism, Behavior, Eye Movements, Macaca mulatta, Prefrontal Cortex, 12163542},
}
Downloads: 0
{"_id":"5X6m9Exr6MtDGj3Ah","bibbaseid":"freedman-riesenhuber-poggio-miller-visualcategorizationandtheprimateprefrontalcortexneurophysiologyandbehavior-2002","author_short":["Freedman, D. J","Riesenhuber, M.","Poggio, T.","Miller, E. K"],"bibdata":{"bibtype":"article","type":"article","author":[{"firstnames":["David","J"],"propositions":[],"lastnames":["Freedman"],"suffixes":[]},{"firstnames":["Maximilian"],"propositions":[],"lastnames":["Riesenhuber"],"suffixes":[]},{"firstnames":["Tomaso"],"propositions":[],"lastnames":["Poggio"],"suffixes":[]},{"firstnames":["Earl","K"],"propositions":[],"lastnames":["Miller"],"suffixes":[]}],"journal":"J Neurophysiol","title":"Visual categorization and the primate prefrontal cortex: Neurophysiology and behavior.","year":"2002","number":"2","pages":"929-41","volume":"88","abstract":"The ability to group stimuli into meaningful categories is a fundamental cognitive process. To explore its neuronal basis, we trained monkeys to categorize computer-generated stimuli as \"cats\" and \"dogs.\" A morphing system was used to systematically vary stimulus shape and precisely define a category boundary. Psychophysical testing and analysis of eye movements suggest that the monkeys categorized the stimuli by attending to multiple stimulus features. Neuronal activity in the lateral prefrontal cortex reflected the category of visual stimuli and changed with learning when a monkey was retrained with the same stimuli assigned to new categories. Further, many neurons showed activity that appeared to reflect the monkey's decision about whether two stimuli were from the same category or not. These results suggest that the lateral prefrontal cortex is an important part of the neuronal circuitry underlying category learning and category-based behaviors.","keywords":"Computing Methodologies, Human, Language, Learning, Mental Processes, Models, Theoretical, Stochastic Processes, Support, U.S. Gov't, Non-P.H.S., Cognition, Linguistics, Neural Networks (Computer), Practice (Psychology), Non-U.S. Gov't, Memory, Psychological, Task Performance and Analysis, Time Factors, Visual Perception, Adult, Attention, Discrimination Learning, Female, Male, Short-Term, Mental Recall, Orientation, Pattern Recognition, Visual, Perceptual Masking, Reading, Concept Formation, Form Perception, Animals, Corpus Striatum, Shrews, P.H.S., Visual Cortex, Visual Pathways, Acoustic Stimulation, Auditory Cortex, Auditory Perception, Cochlea, Ear, Gerbillinae, Glycine, Hearing, Neurons, Space Perception, Strychnine, Adolescent, Decision Making, Reaction Time, Astrocytoma, Brain Mapping, Brain Neoplasms, Cerebral Cortex, Electric Stimulation, Electrophysiology, Epilepsy, Temporal Lobe, Evoked Potentials, Frontal Lobe, Noise, Parietal Lobe, Scalp, Child, Language Development, Psycholinguistics, Brain, Perception, Speech, Vocalization, Animal, Discrimination (Psychology), Hippocampus, Rats, Calcium, Chelating Agents, Excitatory Postsynaptic Potentials, Glutamic Acid, Guanosine Diphosphate, In Vitro, Neuronal Plasticity, Pyramidal Cells, Receptors, AMPA, Metabotropic Glutamate, N-Methyl-D-Aspartate, Somatosensory Cortex, Synapses, Synaptic Transmission, Thionucleotides, Action Potentials, Calcium Channels, L-Type, Electric Conductivity, Entorhinal Cortex, Neurological, Long-Evans, Infant, Mathematics, Statistics, Probability Learning, Problem Solving, Psychophysics, Association Learning, Child Psychology, Habituation (Psychophysiology), Probability Theory, Analysis of Variance, Semantics, Symbolism, Behavior, Eye Movements, Macaca mulatta, Prefrontal Cortex, 12163542","bibtex":"@Article{Freedman2002,\n author = {David J Freedman and Maximilian Riesenhuber and Tomaso Poggio and Earl K Miller},\n journal = {J Neurophysiol},\n title = {Visual categorization and the primate prefrontal cortex: {N}europhysiology and behavior.},\n year = {2002},\n number = {2},\n pages = {929-41},\n volume = {88},\n abstract = {The ability to group stimuli into meaningful categories is a fundamental\n\tcognitive process. To explore its neuronal basis, we trained monkeys\n\tto categorize computer-generated stimuli as \"cats\" and \"dogs.\" A\n\tmorphing system was used to systematically vary stimulus shape and\n\tprecisely define a category boundary. Psychophysical testing and\n\tanalysis of eye movements suggest that the monkeys categorized the\n\tstimuli by attending to multiple stimulus features. Neuronal activity\n\tin the lateral prefrontal cortex reflected the category of visual\n\tstimuli and changed with learning when a monkey was retrained with\n\tthe same stimuli assigned to new categories. Further, many neurons\n\tshowed activity that appeared to reflect the monkey's decision about\n\twhether two stimuli were from the same category or not. These results\n\tsuggest that the lateral prefrontal cortex is an important part of\n\tthe neuronal circuitry underlying category learning and category-based\n\tbehaviors.},\n keywords = {Computing Methodologies, Human, Language, Learning, Mental Processes, Models, Theoretical, Stochastic Processes, Support, U.S. Gov't, Non-P.H.S., Cognition, Linguistics, Neural Networks (Computer), Practice (Psychology), Non-U.S. Gov't, Memory, Psychological, Task Performance and Analysis, Time Factors, Visual Perception, Adult, Attention, Discrimination Learning, Female, Male, Short-Term, Mental Recall, Orientation, Pattern Recognition, Visual, Perceptual Masking, Reading, Concept Formation, Form Perception, Animals, Corpus Striatum, Shrews, P.H.S., Visual Cortex, Visual Pathways, Acoustic Stimulation, Auditory Cortex, Auditory Perception, Cochlea, Ear, Gerbillinae, Glycine, Hearing, Neurons, Space Perception, Strychnine, Adolescent, Decision Making, Reaction Time, Astrocytoma, Brain Mapping, Brain Neoplasms, Cerebral Cortex, Electric Stimulation, Electrophysiology, Epilepsy, Temporal Lobe, Evoked Potentials, Frontal Lobe, Noise, Parietal Lobe, Scalp, Child, Language Development, Psycholinguistics, Brain, Perception, Speech, Vocalization, Animal, Discrimination (Psychology), Hippocampus, Rats, Calcium, Chelating Agents, Excitatory Postsynaptic Potentials, Glutamic Acid, Guanosine Diphosphate, In Vitro, Neuronal Plasticity, Pyramidal Cells, Receptors, AMPA, Metabotropic Glutamate, N-Methyl-D-Aspartate, Somatosensory Cortex, Synapses, Synaptic Transmission, Thionucleotides, Action Potentials, Calcium Channels, L-Type, Electric Conductivity, Entorhinal Cortex, Neurological, Long-Evans, Infant, Mathematics, Statistics, Probability Learning, Problem Solving, Psychophysics, Association Learning, Child Psychology, Habituation (Psychophysiology), Probability Theory, Analysis of Variance, Semantics, Symbolism, Behavior, Eye Movements, Macaca mulatta, Prefrontal Cortex, 12163542},\n}\n\n","author_short":["Freedman, D. J","Riesenhuber, M.","Poggio, T.","Miller, E. K"],"key":"Freedman2002","id":"Freedman2002","bibbaseid":"freedman-riesenhuber-poggio-miller-visualcategorizationandtheprimateprefrontalcortexneurophysiologyandbehavior-2002","role":"author","urls":{},"keyword":["Computing Methodologies","Human","Language","Learning","Mental Processes","Models","Theoretical","Stochastic Processes","Support","U.S. Gov't","Non-P.H.S.","Cognition","Linguistics","Neural Networks (Computer)","Practice (Psychology)","Non-U.S. Gov't","Memory","Psychological","Task Performance and Analysis","Time Factors","Visual Perception","Adult","Attention","Discrimination Learning","Female","Male","Short-Term","Mental Recall","Orientation","Pattern Recognition","Visual","Perceptual Masking","Reading","Concept Formation","Form Perception","Animals","Corpus Striatum","Shrews","P.H.S.","Visual Cortex","Visual Pathways","Acoustic Stimulation","Auditory Cortex","Auditory Perception","Cochlea","Ear","Gerbillinae","Glycine","Hearing","Neurons","Space Perception","Strychnine","Adolescent","Decision Making","Reaction Time","Astrocytoma","Brain Mapping","Brain Neoplasms","Cerebral Cortex","Electric Stimulation","Electrophysiology","Epilepsy","Temporal Lobe","Evoked Potentials","Frontal Lobe","Noise","Parietal Lobe","Scalp","Child","Language Development","Psycholinguistics","Brain","Perception","Speech","Vocalization","Animal","Discrimination (Psychology)","Hippocampus","Rats","Calcium","Chelating Agents","Excitatory Postsynaptic Potentials","Glutamic Acid","Guanosine Diphosphate","In Vitro","Neuronal Plasticity","Pyramidal Cells","Receptors","AMPA","Metabotropic Glutamate","N-Methyl-D-Aspartate","Somatosensory Cortex","Synapses","Synaptic Transmission","Thionucleotides","Action Potentials","Calcium Channels","L-Type","Electric Conductivity","Entorhinal Cortex","Neurological","Long-Evans","Infant","Mathematics","Statistics","Probability Learning","Problem Solving","Psychophysics","Association Learning","Child Psychology","Habituation (Psychophysiology)","Probability Theory","Analysis of Variance","Semantics","Symbolism","Behavior","Eye Movements","Macaca mulatta","Prefrontal Cortex","12163542"],"metadata":{"authorlinks":{}}},"bibtype":"article","biburl":"https://endress.org/publications/ansgar.bib","dataSources":["xPGxHAeh3vZpx4yyE","5qXSH7BrePnXHtcrf","TXa55dQbNoWnaGmMq"],"keywords":["computing methodologies","human","language","learning","mental processes","models","theoretical","stochastic processes","support","u.s. gov't","non-p.h.s.","cognition","linguistics","neural networks (computer)","practice (psychology)","non-u.s. gov't","memory","psychological","task performance and analysis","time factors","visual perception","adult","attention","discrimination learning","female","male","short-term","mental recall","orientation","pattern recognition","visual","perceptual masking","reading","concept formation","form perception","animals","corpus striatum","shrews","p.h.s.","visual cortex","visual pathways","acoustic stimulation","auditory cortex","auditory perception","cochlea","ear","gerbillinae","glycine","hearing","neurons","space perception","strychnine","adolescent","decision making","reaction time","astrocytoma","brain mapping","brain neoplasms","cerebral cortex","electric stimulation","electrophysiology","epilepsy","temporal lobe","evoked potentials","frontal lobe","noise","parietal lobe","scalp","child","language development","psycholinguistics","brain","perception","speech","vocalization","animal","discrimination (psychology)","hippocampus","rats","calcium","chelating agents","excitatory postsynaptic potentials","glutamic acid","guanosine diphosphate","in vitro","neuronal plasticity","pyramidal cells","receptors","ampa","metabotropic glutamate","n-methyl-d-aspartate","somatosensory cortex","synapses","synaptic transmission","thionucleotides","action potentials","calcium channels","l-type","electric conductivity","entorhinal cortex","neurological","long-evans","infant","mathematics","statistics","probability learning","problem solving","psychophysics","association learning","child psychology","habituation (psychophysiology)","probability theory","analysis of variance","semantics","symbolism","behavior","eye movements","macaca mulatta","prefrontal cortex","12163542"],"search_terms":["visual","categorization","primate","prefrontal","cortex","neurophysiology","behavior","freedman","riesenhuber","poggio","miller"],"title":"Visual categorization and the primate prefrontal cortex: Neurophysiology and behavior.","year":2002}