Optical coherence tomographic angiography identifies peripapillary microvascular dilation and focal non-perfusion in giant cell arteritis. Gaier, E. D., Gilbert, A. L., Cestari, D. M., & Miller, J. B. The British Journal of Ophthalmology, November, 2017.
doi  abstract   bibtex   
AIMS: We set out to determine the optical coherence tomographic angiography (OCT-A) characteristics of arteritic anterior ischaemic optic neuropathy (AAION) in the context of giant cell arteritis (GCA). METHODS: This is an observational case series of four patients with AAION secondary to GCA, three with unilateral AAION and one with bilateral AAION. We reviewed the charts, fundus photography, visual fields, fluorescein angiography (FA) and OCT-A images for all patients to identify a unifying theme in a range of AAION clinical severity. Imaging of two healthy control eyes from two patients of similar age to the patients in our series were used for comparison. RESULTS: Superficial peripapillary capillary dilation was seen in eyes with acute AAION. It was also noted in the fellow eyes of two patients. Retinal capillary perfusion defects corresponded to visual field loss. Dense optic disc oedema and cotton-wool spots imparted blockage effects. OCT-A laminar analysis did not highlight the choroidal/choriocapillaris perfusion defects seen on FA in two patients. Follow-up OCT-A was obtained in two patients and revealed progression to superficial peripapillary capillary attenuation that corresponded with visual field loss. CONCLUSIONS: There are acute and chronic vascular changes in AAION that are detectable by OCT-A that correspond with visual function. Though the microvascular changes seen in GCA and AAION are not specific, the nearly ubiquitous findings among preclinical and clinically affected eyes in this series of patients with GCA support OCT-A as a potentially useful adjunctive diagnostic test in the work-up of ambiguous cases of suspected ischaemic optic neuropathy.
@article{gaier_optical_2017,
	title = {Optical coherence tomographic angiography identifies peripapillary microvascular dilation and focal non-perfusion in giant cell arteritis},
	issn = {1468-2079},
	doi = {10.1136/bjophthalmol-2017-310718},
	abstract = {AIMS: We set out to determine the optical coherence tomographic angiography (OCT-A) characteristics of arteritic anterior ischaemic optic neuropathy (AAION) in the context of giant cell arteritis (GCA).
METHODS: This is an observational case series of four patients with AAION secondary to GCA, three with unilateral AAION and one with bilateral AAION. We reviewed the charts, fundus photography, visual fields, fluorescein angiography (FA) and OCT-A images for all patients to identify a unifying theme in a range of AAION clinical severity. Imaging of two healthy control eyes from two patients of similar age to the patients in our series were used for comparison.
RESULTS: Superficial peripapillary capillary dilation was seen in eyes with acute AAION. It was also noted in the fellow eyes of two patients. Retinal capillary perfusion defects corresponded to visual field loss. Dense optic disc oedema and cotton-wool spots imparted blockage effects. OCT-A laminar analysis did not highlight the choroidal/choriocapillaris perfusion defects seen on FA in two patients. Follow-up OCT-A was obtained in two patients and revealed progression to superficial peripapillary capillary attenuation that corresponded with visual field loss.
CONCLUSIONS: There are acute and chronic vascular changes in AAION that are detectable by OCT-A that correspond with visual function. Though the microvascular changes seen in GCA and AAION are not specific, the nearly ubiquitous findings among preclinical and clinically affected eyes in this series of patients with GCA support OCT-A as a potentially useful adjunctive diagnostic test in the work-up of ambiguous cases of suspected ischaemic optic neuropathy.},
	language = {eng},
	journal = {The British Journal of Ophthalmology},
	author = {Gaier, Eric D. and Gilbert, Aubrey L. and Cestari, Dean M. and Miller, John B.},
	month = nov,
	year = {2017},
	pmid = {29122818},
	keywords = {imaging, optic nerve}
}

Downloads: 0