Comparison of edge computing methods in Internet of Things architectures for efficient estimation of indoor environmental parameters with Machine Learning. Gamazo-Real, J. C., Fernández, R. T., & Armas, A. M. CoRR, 2024.
Link
Paper bibtex @article{journals/corr/abs-2403-08810,
added-at = {2024-04-05T00:00:00.000+0200},
author = {Gamazo-Real, José Carlos and Fernández, Raúl Torres and Armas, Adrián Murillo},
biburl = {https://www.bibsonomy.org/bibtex/2b9a674758a7c73e1facf5e92e936ba42/dblp},
ee = {https://doi.org/10.48550/arXiv.2403.08810},
interhash = {ff750d50630c0410f0e49fc9a55803ce},
intrahash = {b9a674758a7c73e1facf5e92e936ba42},
journal = {CoRR},
keywords = {dblp},
timestamp = {2024-04-08T22:21:49.000+0200},
title = {Comparison of edge computing methods in Internet of Things architectures for efficient estimation of indoor environmental parameters with Machine Learning.},
url = {http://dblp.uni-trier.de/db/journals/corr/corr2403.html#abs-2403-08810},
volume = {abs/2403.08810},
year = 2024
}
Downloads: 0
{"_id":"2z7QQt753ix2Qjmp5","bibbaseid":"gamazoreal-fernndez-armas-comparisonofedgecomputingmethodsininternetofthingsarchitecturesforefficientestimationofindoorenvironmentalparameterswithmachinelearning-2024","author_short":["Gamazo-Real, J. C.","Fernández, R. T.","Armas, A. M."],"bibdata":{"bibtype":"article","type":"article","added-at":"2024-04-05T00:00:00.000+0200","author":[{"propositions":[],"lastnames":["Gamazo-Real"],"firstnames":["José","Carlos"],"suffixes":[]},{"propositions":[],"lastnames":["Fernández"],"firstnames":["Raúl","Torres"],"suffixes":[]},{"propositions":[],"lastnames":["Armas"],"firstnames":["Adrián","Murillo"],"suffixes":[]}],"biburl":"https://www.bibsonomy.org/bibtex/2b9a674758a7c73e1facf5e92e936ba42/dblp","ee":"https://doi.org/10.48550/arXiv.2403.08810","interhash":"ff750d50630c0410f0e49fc9a55803ce","intrahash":"b9a674758a7c73e1facf5e92e936ba42","journal":"CoRR","keywords":"dblp","timestamp":"2024-04-08T22:21:49.000+0200","title":"Comparison of edge computing methods in Internet of Things architectures for efficient estimation of indoor environmental parameters with Machine Learning.","url":"http://dblp.uni-trier.de/db/journals/corr/corr2403.html#abs-2403-08810","volume":"abs/2403.08810","year":"2024","bibtex":"@article{journals/corr/abs-2403-08810,\n added-at = {2024-04-05T00:00:00.000+0200},\n author = {Gamazo-Real, José Carlos and Fernández, Raúl Torres and Armas, Adrián Murillo},\n biburl = {https://www.bibsonomy.org/bibtex/2b9a674758a7c73e1facf5e92e936ba42/dblp},\n ee = {https://doi.org/10.48550/arXiv.2403.08810},\n interhash = {ff750d50630c0410f0e49fc9a55803ce},\n intrahash = {b9a674758a7c73e1facf5e92e936ba42},\n journal = {CoRR},\n keywords = {dblp},\n timestamp = {2024-04-08T22:21:49.000+0200},\n title = {Comparison of edge computing methods in Internet of Things architectures for efficient estimation of indoor environmental parameters with Machine Learning.},\n url = {http://dblp.uni-trier.de/db/journals/corr/corr2403.html#abs-2403-08810},\n volume = {abs/2403.08810},\n year = 2024\n}\n\n","author_short":["Gamazo-Real, J. C.","Fernández, R. T.","Armas, A. M."],"key":"journals/corr/abs-2403-08810","id":"journals/corr/abs-2403-08810","bibbaseid":"gamazoreal-fernndez-armas-comparisonofedgecomputingmethodsininternetofthingsarchitecturesforefficientestimationofindoorenvironmentalparameterswithmachinelearning-2024","role":"author","urls":{"Link":"https://doi.org/10.48550/arXiv.2403.08810","Paper":"http://dblp.uni-trier.de/db/journals/corr/corr2403.html#abs-2403-08810"},"keyword":["dblp"],"metadata":{"authorlinks":{}},"downloads":0,"html":""},"bibtype":"article","biburl":"http://www.bibsonomy.org/bib/author/Adrian?items=1000","dataSources":["Btt3eqLNGrLCpALen"],"keywords":["dblp"],"search_terms":["comparison","edge","computing","methods","internet","things","architectures","efficient","estimation","indoor","environmental","parameters","machine","learning","gamazo-real","fernández","armas"],"title":"Comparison of edge computing methods in Internet of Things architectures for efficient estimation of indoor environmental parameters with Machine Learning.","year":2024}