Overexpression of vesicle-associated membrane protein PttVAP27-17 as a tool to improve biomass production and the overall saccharification yields in Populus trees. Gandla, M. L., Mähler, N., Escamez, S., Skotare, T., Obudulu, O., Möller, L., Abreu, I. N., Bygdell, J., Hertzberg, M., Hvidsten, T. R., Moritz, T., Wingsle, G., Trygg, J., Tuominen, H., & Jönsson, L. J. Biotechnology for Biofuels, 14(1):43, December, 2021. Paper doi abstract bibtex 6 downloads Abstract Background Bioconversion of wood into bioproducts and biofuels is hindered by the recalcitrance of woody raw material to bioprocesses such as enzymatic saccharification. Targeted modification of the chemical composition of the feedstock can improve saccharification but this gain is often abrogated by concomitant reduction in tree growth. Results In this study, we report on transgenic hybrid aspen ( Populus tremula × tremuloides ) lines that showed potential to increase biomass production both in the greenhouse and after 5 years of growth in the field. The transgenic lines carried an overexpression construct for Populus tremula × tremuloides vesicle-associated membrane protein (VAMP)-associated protein PttVAP27-17 that was selected from a gene-mining program for novel regulators of wood formation. Analytical-scale enzymatic saccharification without any pretreatment revealed for all greenhouse-grown transgenic lines, compared to the wild type, a 20–44% increase in the glucose yield per dry weight after enzymatic saccharification, even though it was statistically significant only for one line. The glucose yield after enzymatic saccharification with a prior hydrothermal pretreatment step with sulfuric acid was not increased in the greenhouse-grown transgenic trees on a dry-weight basis, but increased by 26–50% when calculated on a whole biomass basis in comparison to the wild-type control. Tendencies to increased glucose yields by up to 24% were present on a whole tree biomass basis after acidic pretreatment and enzymatic saccharification also in the transgenic trees grown for 5 years on the field when compared to the wild-type control. Conclusions The results demonstrate the usefulness of gene-mining programs to identify novel genes with the potential to improve biofuel production in tree biotechnology programs. Furthermore, multi-omic analyses, including transcriptomic, proteomic and metabolomic analyses, performed here provide a toolbox for future studies on the function of VAP27 proteins in plants.
@article{gandla_overexpression_2021,
title = {Overexpression of vesicle-associated membrane protein {PttVAP27}-17 as a tool to improve biomass production and the overall saccharification yields in {Populus} trees},
volume = {14},
issn = {1754-6834},
url = {https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-021-01895-0},
doi = {10/gjd7kj},
abstract = {Abstract
Background
Bioconversion of wood into bioproducts and biofuels is hindered by the recalcitrance of woody raw material to bioprocesses such as enzymatic saccharification. Targeted modification of the chemical composition of the feedstock can improve saccharification but this gain is often abrogated by concomitant reduction in tree growth.
Results
In this study, we report on transgenic hybrid aspen (
Populus tremula
×
tremuloides
) lines that showed potential to increase biomass production both in the greenhouse and after 5 years of growth in the field. The transgenic lines carried an overexpression construct for
Populus tremula
×
tremuloides
vesicle-associated membrane protein (VAMP)-associated protein
PttVAP27-17
that was selected from a gene-mining program for novel regulators of wood formation. Analytical-scale enzymatic saccharification without any pretreatment revealed for all greenhouse-grown transgenic lines, compared to the wild type, a 20–44\% increase in the glucose yield per dry weight after enzymatic saccharification, even though it was statistically significant only for one line. The glucose yield after enzymatic saccharification with a prior hydrothermal pretreatment step with sulfuric acid was not increased in the greenhouse-grown transgenic trees on a dry-weight basis, but increased by 26–50\% when calculated on a whole biomass basis in comparison to the wild-type control. Tendencies to increased glucose yields by up to 24\% were present on a whole tree biomass basis after acidic pretreatment and enzymatic saccharification also in the transgenic trees grown for 5 years on the field when compared to the wild-type control.
Conclusions
The results demonstrate the usefulness of gene-mining programs to identify novel genes with the potential to improve biofuel production in tree biotechnology programs. Furthermore, multi-omic analyses, including transcriptomic, proteomic and metabolomic analyses, performed here provide a toolbox for future studies on the function of VAP27 proteins in plants.},
language = {en},
number = {1},
urldate = {2021-06-03},
journal = {Biotechnology for Biofuels},
author = {Gandla, Madhavi Latha and Mähler, Niklas and Escamez, Sacha and Skotare, Tomas and Obudulu, Ogonna and Möller, Linus and Abreu, Ilka N. and Bygdell, Joakim and Hertzberg, Magnus and Hvidsten, Torgeir R. and Moritz, Thomas and Wingsle, Gunnar and Trygg, Johan and Tuominen, Hannele and Jönsson, Leif J.},
month = dec,
year = {2021},
pages = {43},
}
Downloads: 6
{"_id":"aYu9bJ6rveimz5iy4","bibbaseid":"gandla-mhler-escamez-skotare-obudulu-mller-abreu-bygdell-etal-overexpressionofvesicleassociatedmembraneproteinpttvap2717asatooltoimprovebiomassproductionandtheoverallsaccharificationyieldsinpopulustrees-2021","author_short":["Gandla, M. L.","Mähler, N.","Escamez, S.","Skotare, T.","Obudulu, O.","Möller, L.","Abreu, I. N.","Bygdell, J.","Hertzberg, M.","Hvidsten, T. R.","Moritz, T.","Wingsle, G.","Trygg, J.","Tuominen, H.","Jönsson, L. J."],"bibdata":{"bibtype":"article","type":"article","title":"Overexpression of vesicle-associated membrane protein PttVAP27-17 as a tool to improve biomass production and the overall saccharification yields in Populus trees","volume":"14","issn":"1754-6834","url":"https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-021-01895-0","doi":"10/gjd7kj","abstract":"Abstract Background Bioconversion of wood into bioproducts and biofuels is hindered by the recalcitrance of woody raw material to bioprocesses such as enzymatic saccharification. Targeted modification of the chemical composition of the feedstock can improve saccharification but this gain is often abrogated by concomitant reduction in tree growth. Results In this study, we report on transgenic hybrid aspen ( Populus tremula × tremuloides ) lines that showed potential to increase biomass production both in the greenhouse and after 5 years of growth in the field. The transgenic lines carried an overexpression construct for Populus tremula × tremuloides vesicle-associated membrane protein (VAMP)-associated protein PttVAP27-17 that was selected from a gene-mining program for novel regulators of wood formation. Analytical-scale enzymatic saccharification without any pretreatment revealed for all greenhouse-grown transgenic lines, compared to the wild type, a 20–44% increase in the glucose yield per dry weight after enzymatic saccharification, even though it was statistically significant only for one line. The glucose yield after enzymatic saccharification with a prior hydrothermal pretreatment step with sulfuric acid was not increased in the greenhouse-grown transgenic trees on a dry-weight basis, but increased by 26–50% when calculated on a whole biomass basis in comparison to the wild-type control. Tendencies to increased glucose yields by up to 24% were present on a whole tree biomass basis after acidic pretreatment and enzymatic saccharification also in the transgenic trees grown for 5 years on the field when compared to the wild-type control. Conclusions The results demonstrate the usefulness of gene-mining programs to identify novel genes with the potential to improve biofuel production in tree biotechnology programs. Furthermore, multi-omic analyses, including transcriptomic, proteomic and metabolomic analyses, performed here provide a toolbox for future studies on the function of VAP27 proteins in plants.","language":"en","number":"1","urldate":"2021-06-03","journal":"Biotechnology for Biofuels","author":[{"propositions":[],"lastnames":["Gandla"],"firstnames":["Madhavi","Latha"],"suffixes":[]},{"propositions":[],"lastnames":["Mähler"],"firstnames":["Niklas"],"suffixes":[]},{"propositions":[],"lastnames":["Escamez"],"firstnames":["Sacha"],"suffixes":[]},{"propositions":[],"lastnames":["Skotare"],"firstnames":["Tomas"],"suffixes":[]},{"propositions":[],"lastnames":["Obudulu"],"firstnames":["Ogonna"],"suffixes":[]},{"propositions":[],"lastnames":["Möller"],"firstnames":["Linus"],"suffixes":[]},{"propositions":[],"lastnames":["Abreu"],"firstnames":["Ilka","N."],"suffixes":[]},{"propositions":[],"lastnames":["Bygdell"],"firstnames":["Joakim"],"suffixes":[]},{"propositions":[],"lastnames":["Hertzberg"],"firstnames":["Magnus"],"suffixes":[]},{"propositions":[],"lastnames":["Hvidsten"],"firstnames":["Torgeir","R."],"suffixes":[]},{"propositions":[],"lastnames":["Moritz"],"firstnames":["Thomas"],"suffixes":[]},{"propositions":[],"lastnames":["Wingsle"],"firstnames":["Gunnar"],"suffixes":[]},{"propositions":[],"lastnames":["Trygg"],"firstnames":["Johan"],"suffixes":[]},{"propositions":[],"lastnames":["Tuominen"],"firstnames":["Hannele"],"suffixes":[]},{"propositions":[],"lastnames":["Jönsson"],"firstnames":["Leif","J."],"suffixes":[]}],"month":"December","year":"2021","pages":"43","bibtex":"@article{gandla_overexpression_2021,\n\ttitle = {Overexpression of vesicle-associated membrane protein {PttVAP27}-17 as a tool to improve biomass production and the overall saccharification yields in {Populus} trees},\n\tvolume = {14},\n\tissn = {1754-6834},\n\turl = {https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-021-01895-0},\n\tdoi = {10/gjd7kj},\n\tabstract = {Abstract\n \n Background\n Bioconversion of wood into bioproducts and biofuels is hindered by the recalcitrance of woody raw material to bioprocesses such as enzymatic saccharification. Targeted modification of the chemical composition of the feedstock can improve saccharification but this gain is often abrogated by concomitant reduction in tree growth.\n \n \n Results\n \n In this study, we report on transgenic hybrid aspen (\n Populus tremula\n ×\n tremuloides\n ) lines that showed potential to increase biomass production both in the greenhouse and after 5 years of growth in the field. The transgenic lines carried an overexpression construct for\n Populus tremula\n ×\n tremuloides\n vesicle-associated membrane protein (VAMP)-associated protein\n PttVAP27-17\n that was selected from a gene-mining program for novel regulators of wood formation. Analytical-scale enzymatic saccharification without any pretreatment revealed for all greenhouse-grown transgenic lines, compared to the wild type, a 20–44\\% increase in the glucose yield per dry weight after enzymatic saccharification, even though it was statistically significant only for one line. The glucose yield after enzymatic saccharification with a prior hydrothermal pretreatment step with sulfuric acid was not increased in the greenhouse-grown transgenic trees on a dry-weight basis, but increased by 26–50\\% when calculated on a whole biomass basis in comparison to the wild-type control. Tendencies to increased glucose yields by up to 24\\% were present on a whole tree biomass basis after acidic pretreatment and enzymatic saccharification also in the transgenic trees grown for 5 years on the field when compared to the wild-type control.\n \n \n \n Conclusions\n The results demonstrate the usefulness of gene-mining programs to identify novel genes with the potential to improve biofuel production in tree biotechnology programs. Furthermore, multi-omic analyses, including transcriptomic, proteomic and metabolomic analyses, performed here provide a toolbox for future studies on the function of VAP27 proteins in plants.},\n\tlanguage = {en},\n\tnumber = {1},\n\turldate = {2021-06-03},\n\tjournal = {Biotechnology for Biofuels},\n\tauthor = {Gandla, Madhavi Latha and Mähler, Niklas and Escamez, Sacha and Skotare, Tomas and Obudulu, Ogonna and Möller, Linus and Abreu, Ilka N. and Bygdell, Joakim and Hertzberg, Magnus and Hvidsten, Torgeir R. and Moritz, Thomas and Wingsle, Gunnar and Trygg, Johan and Tuominen, Hannele and Jönsson, Leif J.},\n\tmonth = dec,\n\tyear = {2021},\n\tpages = {43},\n}\n\n\n\n\n\n\n\n","author_short":["Gandla, M. L.","Mähler, N.","Escamez, S.","Skotare, T.","Obudulu, O.","Möller, L.","Abreu, I. N.","Bygdell, J.","Hertzberg, M.","Hvidsten, T. R.","Moritz, T.","Wingsle, G.","Trygg, J.","Tuominen, H.","Jönsson, L. J."],"key":"gandla_overexpression_2021","id":"gandla_overexpression_2021","bibbaseid":"gandla-mhler-escamez-skotare-obudulu-mller-abreu-bygdell-etal-overexpressionofvesicleassociatedmembraneproteinpttvap2717asatooltoimprovebiomassproductionandtheoverallsaccharificationyieldsinpopulustrees-2021","role":"author","urls":{"Paper":"https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-021-01895-0"},"metadata":{"authorlinks":{}},"downloads":6},"bibtype":"article","biburl":"https://bibbase.org/zotero/upscpub","dataSources":["BWjCxrgTRivYbQeoF","J2JByCDmH2EhYKCgK","nGjyy5awzuqhNWa8M","NHbQYacjR8CQt4YJM","c6F6bnddZ2ppmYu2k","SRYw8afoC5xTzE9WQ","fvfkWcShg3Mybjoog","Tu3jPdZyJF3j547xT","9cGcv2t8pRzC92kzs","3zTPPmKj8BiTcpc6C"],"keywords":[],"search_terms":["overexpression","vesicle","associated","membrane","protein","pttvap27","tool","improve","biomass","production","overall","saccharification","yields","populus","trees","gandla","mähler","escamez","skotare","obudulu","möller","abreu","bygdell","hertzberg","hvidsten","moritz","wingsle","trygg","tuominen","jönsson"],"title":"Overexpression of vesicle-associated membrane protein PttVAP27-17 as a tool to improve biomass production and the overall saccharification yields in Populus trees","year":2021,"downloads":6}