All-sky Radio SETI. Garrett, M., Siemion, A., & van Cappellen, W. ArXiv e-prints, 1709:arXiv:1709.01338, September, 2017.
All-sky Radio SETI [link]Paper  abstract   bibtex   
Over the last decade, Aperture Arrays (AA) have successfully replaced parabolic dishes as the technology of choice at low radio frequencies - good examples are the MWA, LWA and LOFAR. Aperture Array based telescopes present several advantages, including sensitivity to the sky over a very wide field-of-view. As digital and data processing systems continue to advance, an all-sky capability is set to emerge, even at GHz frequencies. We argue that assuming SETI events are both rare and transitory in nature, an instrument with a large field-of-view, operating around the so-called water-hole (1-2 GHz), might offer several advantages over contemporary searches. Sir Arthur C. Clarke was the first to recognise the potential importance of an all-sky radio SETI capability, as presented in his book, Imperial Earth. As part of the global SKA (Square Kilometre Array) project, a Mid-Frequency Aperture Array (MFAA) prototype known as MANTIS (Mid- Frequency Aperture Array Transient and Intensity-Mapping System) is now being considered as a precursor for SKA-2. MANTIS can be seen as a first step towards an all-sky radio SETI capability at GHz frequencies. This development has the potential to transform the field of SETI research, in addition to several other scientific programmes.
@article{garrett_all-sky_2017,
	title = {All-sky {Radio} {SETI}},
	volume = {1709},
	url = {http://adsabs.harvard.edu/abs/2017arXiv170901338G},
	abstract = {Over the last decade, Aperture Arrays (AA) have successfully replaced parabolic dishes as the technology of choice at low radio frequencies - good examples are the MWA, LWA and LOFAR. Aperture Array based
telescopes present several advantages, including sensitivity to the sky over a very wide field-of-view. As digital and data processing systems continue to advance, an all-sky capability is set to emerge, even at GHz frequencies. We argue that assuming SETI events are both rare and transitory in nature, an instrument with a large field-of-view,
operating around the so-called water-hole (1-2 GHz), might offer several advantages over contemporary searches. Sir Arthur C. Clarke was the first to recognise the potential importance of an all-sky radio SETI capability, as presented in his book, Imperial Earth. As part of the global SKA (Square Kilometre Array) project, a Mid-Frequency Aperture Array (MFAA) prototype known as MANTIS (Mid- Frequency Aperture Array Transient and Intensity-Mapping System) is now being considered as a precursor for SKA-2. MANTIS can be seen as a first step towards an all-sky radio SETI capability at GHz frequencies. This development has the potential to transform the field of SETI research, in addition to several other scientific programmes.},
	journal = {ArXiv e-prints},
	author = {Garrett, Michael and Siemion, Andrew and van Cappellen, Wim},
	month = sep,
	year = {2017},
	keywords = {Astrophysics - Instrumentation and Methods for Astrophysics},
	pages = {arXiv:1709.01338},
}

Downloads: 0