Polyfluoroalkyl phosphate esters and perfluoroalkyl carboxylic acids in target food samples and packaging-method development and screening. Gebbink, W. A., Ullah, S., Sandblom, O., & Berger, U. Environmental Science and Pollution Research, 20(11):7949–7958, 2013.
doi  abstract   bibtex   
Polyfluoroalkyl phosphate mono-, di-, and tri-esters (mono-, di-, and triPAPs) are used to water- and grease-proof food packaging materials, and these chemicals are known precursors to perfluoroalkyl carboxylic acids (PFCAs). Existing analytical methods for PAPs lack sample clean-up steps in the sample preparation. In the present study, a method based on ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC/MS/MS) was developed and optimized for the analysis of mono-, di-, and triPAPs, including a clean-up step for the raw extracts. The method was applied to food samples and their PAP-containing packaging materials. The optimized UPLC/MS/MS method enabled the separation and identification of a total of 4 monoPAPs, 16 diPAPs, and 7 triPAPs in the technical mixture Zonyl®-RP. For sample clean-up, weak anion exchange solid phase extraction columns were tested. PAPs standard solutions spiked onto the columns were separated into a fraction containing neutral compounds (triPAPs) and a fraction with ionic compounds (mono- and diPAPs) with recoveries between 72-110%. Method limits of quantification for food samples were in the sub to low picogram per gram range. For quantitative analysis of PAPs, compound-specific labeled internal standards showed to be essential as sorption and matrix effects were observed. Mono-, di-, and/or triPAPs were detected in all food packaging materials obtained from the Swedish market. Up to nine diPAPs were detected in the food samples, with the 6:2/6:2 and 6:2/8:2 diPAPs as the dominant compounds. DiPAP concentrations in the food samples ranged from 0.9 to 36 pg/g, which was comparable to individual PFCA concentrations in the same samples. Consumption of food packed in PAP-containing materials could be an indirect source of human exposure to PFCAs.
@article{gebbink_polyfluoroalkyl_2013,
	title = {Polyfluoroalkyl phosphate esters and perfluoroalkyl carboxylic acids in target food samples and packaging-method development and screening},
	volume = {20},
	issn = {09441344},
	doi = {10.1007/s11356-013-1596-y},
	abstract = {Polyfluoroalkyl phosphate mono-, di-, and tri-esters (mono-, di-, and triPAPs) are used to water- and grease-proof food packaging materials, and these chemicals are known precursors to perfluoroalkyl carboxylic acids (PFCAs). Existing analytical methods for PAPs lack sample clean-up steps in the sample preparation. In the present study, a method based on ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC/MS/MS) was developed and optimized for the analysis of mono-, di-, and triPAPs, including a clean-up step for the raw extracts. The method was applied to food samples and their PAP-containing packaging materials. The optimized UPLC/MS/MS method enabled the separation and identification of a total of 4 monoPAPs, 16 diPAPs, and 7 triPAPs in the technical mixture Zonyl®-RP. For sample clean-up, weak anion exchange solid phase extraction columns were tested. PAPs standard solutions spiked onto the columns were separated into a fraction containing neutral compounds (triPAPs) and a fraction with ionic compounds (mono- and diPAPs) with recoveries between 72-110\%. Method limits of quantification for food samples were in the sub to low picogram per gram range. For quantitative analysis of PAPs, compound-specific labeled internal standards showed to be essential as sorption and matrix effects were observed. Mono-, di-, and/or triPAPs were detected in all food packaging materials obtained from the Swedish market. Up to nine diPAPs were detected in the food samples, with the 6:2/6:2 and 6:2/8:2 diPAPs as the dominant compounds. DiPAP concentrations in the food samples ranged from 0.9 to 36 pg/g, which was comparable to individual PFCA concentrations in the same samples. Consumption of food packed in PAP-containing materials could be an indirect source of human exposure to PFCAs.},
	number = {11},
	journal = {Environmental Science and Pollution Research},
	author = {Gebbink, Wouter A. and Ullah, Shahid and Sandblom, Oskar and Berger, Urs},
	year = {2013},
	pmid = {23494682},
	keywords = {Food, Method development, PFAS, Packaging material, Polyfluoroalkyl phosphate esters (PAPs), UPLC/MS/MS, diPAPs},
	pages = {7949--7958},
}

Downloads: 0