On the range of the transient frog model on $ \mathbb {Z} $. Ghosh, A., Noren, S., & Roitershtein, A. Advances in Applied Probability, 49(2):327–343, June, 2017.
On the range of the transient frog model on $ \mathbb {Z} $ [link]Paper  doi  bibtex   
@Article{Ghosh:2017:RTF,
  author =       "Arka Ghosh and Steven Noren and Alexander
                 Roitershtein",
  title =        "On the range of the transient frog model on {$ \mathbb
                 {Z} $}",
  journal =      j-ADV-APPL-PROB,
  volume =       "49",
  number =       "2",
  pages =        "327--343",
  month =        jun,
  year =         "2017",
  CODEN =        "AAPBBD",
  DOI =          "https://doi.org/10.1017/apr.2017.3",
  ISSN =         "0001-8678 (print), 1475-6064 (electronic)",
  ISSN-L =       "0001-8678",
  bibdate =      "Sat Mar 16 08:55:03 MDT 2019",
  bibsource =    "http://www.math.utah.edu/pub/tex/bib/advapplprob.bib",
  URL =          "https://www.cambridge.org/core/journals/advances-in-applied-probability/article/on-the-range-of-the-transient-frog-model-on/E9187C66042A98D73D04167566EF28E5",
  acknowledgement = ack-nhfb,
  ajournal =     "Adv. Appl. Probab.",
  fjournal =     "Advances in Applied Probability",
  journal-URL =  "https://www.cambridge.org/core/journals/advances-in-applied-probability",
  onlinedate =   "26 June 2017",
}

Downloads: 0