Recruitment properties of monopolar and bipolar epimysial electrodes. Grandjean, P. A. & Mortimer, J. T. Ann. Biomed. Eng., 14:53–66, 1986. abstract bibtex Muscle force was studied as a function of stimulus parameters, epimysial electrode position relative to nerve supply, and muscle length to provide insight into the properties of motor prostheses that employ epimysial electrodes. The results of the acute experiments indicated that the dependence of recruitment (force versus stimulus amplitude) on muscle length was minimal for a monopolar electrode positioned close to nerve entrance or 5 mm proximal to the motor point. The selectivity of stimulation (minimal activation of adjacent muscles) was best, and the recruitment rate the highest, for an electrode placed close to the nerve entrance. A bipolar pair of electrodes placed on the superficial surface of the muscle opposite to the nerve entrance gave better selectivity than the monopolar electrode at the low end of the recruitment range, and poorer selectivity at the high end. This electrode configuration required greater stimulus currents and exhibited a lower recruitment gain than was obtained for a monopolar electrode in the same position. Examination of tissue surrounding the electrode 30 days after implantation showed that the fibrous tissue encapsulating the electrode had been incorporated into the fascial layer. Slightly larger dependence on muscle length and lower selectivity of stimulation were measured after encapsulation than were measured in the acute experiments.
@Article{SCC.Grandjean.Mortimer1986,
author = {Grandjean, Pierre A. and Mortimer, J. Thomas},
title = {Recruitment properties of monopolar and bipolar epimysial electrodes},
journal = {Ann. Biomed. Eng.},
year = {1986},
volume = {14},
pages = {53--66},
abstract = {Muscle force was studied as a function of stimulus parameters, epimysial electrode position relative to nerve supply, and muscle length to provide insight into the properties of motor prostheses that employ epimysial electrodes. The results of the acute experiments indicated that the dependence of recruitment (force versus stimulus amplitude) on muscle length was minimal for a monopolar electrode positioned close to nerve entrance or 5 mm proximal to the motor point. The selectivity of stimulation (minimal activation of adjacent muscles) was best, and the recruitment rate the highest, for an electrode placed close to the nerve entrance. A bipolar pair of electrodes placed on the superficial surface of the muscle opposite to the nerve entrance gave better selectivity than the monopolar electrode at the low end of the recruitment range, and poorer selectivity at the high end. This electrode configuration required greater stimulus currents and exhibited a lower recruitment gain than was obtained for a monopolar electrode in the same position. Examination of tissue surrounding the electrode 30 days after implantation showed that the fibrous tissue encapsulating the electrode had been incorporated into the fascial layer. Slightly larger dependence on muscle length and lower selectivity of stimulation were measured after encapsulation than were measured in the acute experiments.},
owner = {Ryan},
timestamp = {2015.04.29},
}
Downloads: 0
{"_id":"7yF4rjQhBP8v3CCAr","bibbaseid":"grandjean-mortimer-recruitmentpropertiesofmonopolarandbipolarepimysialelectrodes-1986","authorIDs":[],"author_short":["Grandjean, P. A.","Mortimer, J. T."],"bibdata":{"bibtype":"article","type":"article","author":[{"propositions":[],"lastnames":["Grandjean"],"firstnames":["Pierre","A."],"suffixes":[]},{"propositions":[],"lastnames":["Mortimer"],"firstnames":["J.","Thomas"],"suffixes":[]}],"title":"Recruitment properties of monopolar and bipolar epimysial electrodes","journal":"Ann. Biomed. Eng.","year":"1986","volume":"14","pages":"53–66","abstract":"Muscle force was studied as a function of stimulus parameters, epimysial electrode position relative to nerve supply, and muscle length to provide insight into the properties of motor prostheses that employ epimysial electrodes. The results of the acute experiments indicated that the dependence of recruitment (force versus stimulus amplitude) on muscle length was minimal for a monopolar electrode positioned close to nerve entrance or 5 mm proximal to the motor point. The selectivity of stimulation (minimal activation of adjacent muscles) was best, and the recruitment rate the highest, for an electrode placed close to the nerve entrance. A bipolar pair of electrodes placed on the superficial surface of the muscle opposite to the nerve entrance gave better selectivity than the monopolar electrode at the low end of the recruitment range, and poorer selectivity at the high end. This electrode configuration required greater stimulus currents and exhibited a lower recruitment gain than was obtained for a monopolar electrode in the same position. Examination of tissue surrounding the electrode 30 days after implantation showed that the fibrous tissue encapsulating the electrode had been incorporated into the fascial layer. Slightly larger dependence on muscle length and lower selectivity of stimulation were measured after encapsulation than were measured in the acute experiments.","owner":"Ryan","timestamp":"2015.04.29","bibtex":"@Article{SCC.Grandjean.Mortimer1986,\r\n author = {Grandjean, Pierre A. and Mortimer, J. Thomas},\r\n title = {Recruitment properties of monopolar and bipolar epimysial electrodes},\r\n journal = {Ann. Biomed. Eng.},\r\n year = {1986},\r\n volume = {14},\r\n pages = {53--66},\r\n abstract = {Muscle force was studied as a function of stimulus parameters, epimysial electrode position relative to nerve supply, and muscle length to provide insight into the properties of motor prostheses that employ epimysial electrodes. The results of the acute experiments indicated that the dependence of recruitment (force versus stimulus amplitude) on muscle length was minimal for a monopolar electrode positioned close to nerve entrance or 5 mm proximal to the motor point. The selectivity of stimulation (minimal activation of adjacent muscles) was best, and the recruitment rate the highest, for an electrode placed close to the nerve entrance. A bipolar pair of electrodes placed on the superficial surface of the muscle opposite to the nerve entrance gave better selectivity than the monopolar electrode at the low end of the recruitment range, and poorer selectivity at the high end. This electrode configuration required greater stimulus currents and exhibited a lower recruitment gain than was obtained for a monopolar electrode in the same position. Examination of tissue surrounding the electrode 30 days after implantation showed that the fibrous tissue encapsulating the electrode had been incorporated into the fascial layer. Slightly larger dependence on muscle length and lower selectivity of stimulation were measured after encapsulation than were measured in the acute experiments.},\r\n owner = {Ryan},\r\n timestamp = {2015.04.29},\r\n}\r\n\r\n","author_short":["Grandjean, P. A.","Mortimer, J. T."],"key":"SCC.Grandjean.Mortimer1986","id":"SCC.Grandjean.Mortimer1986","bibbaseid":"grandjean-mortimer-recruitmentpropertiesofmonopolarandbipolarepimysialelectrodes-1986","role":"author","urls":{},"downloads":0},"bibtype":"article","biburl":"https://www.dropbox.com/s/ulqmhc6o5w2em3p/sccmaster.bib?dl=1","creationDate":"2019-05-28T23:29:24.765Z","downloads":0,"keywords":[],"search_terms":["recruitment","properties","monopolar","bipolar","epimysial","electrodes","grandjean","mortimer"],"title":"Recruitment properties of monopolar and bipolar epimysial electrodes","year":1986,"dataSources":["aDrN6vnZWqY8fA7E8"]}