Effects of climatic warming on cold hardiness of some northern woody plants assessed from simulation experiments. Ögren, E. Physiologia Plantarum, 112(1):71–77, 2001. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1034/j.1399-3054.2001.1120110.x
Effects of climatic warming on cold hardiness of some northern woody plants assessed from simulation experiments [link]Paper  doi  abstract   bibtex   
Effects of climatic warming on cold hardiness were investigated for some northern woody plants. In the first experiment, seedlings of Norway spruce (Picea abies [L.] Karst.), Scots pine (Pinus sylvestris L.) and lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) were exposed to naturally fluctuating temperatures averaging −6°C (ambient) and 0°C (elevated) for 16 weeks in midwinter before they were thawed and re-saturated with water. In lodgepole pine, needle sugar concentrations had decreased by 15%, and the temperature needed to induce 10% injury to needles in terms of electrolyte leakage had increased by 6°C following treatment to elevated as compared with control temperatures. In contrast, Norway spruce and Scots pine showed no effects. The lack of an effect for Scots pine was ascribed to seedlings containing unusually large energy reserves that buffered respiratory expenditure of sugars. A strong, linear relationship between levels of cold hardiness, assessed by the electrolyte leakage method, and sugars was found when combining data from this and previous, similar experiments. In the second experiment, the evergreen dwarf shrub Empetrum hermaphroditum Hagerup was analysed for leaf cold hardiness, using the electrolyte leakage method, and sugar concentrations in late spring and late autumn during the third year of a warming experiment in a subarctic dwarf shrub community. The objective was to test the hypothesis that warming in the growing season alters hardening/dehardening cycles by increasing soil nitrogen mineralization and plant growth. Data found, however, suggested that cold hardening/dehardening cycles were unaffected by warming.
@article{ogren_effects_2001,
	title = {Effects of climatic warming on cold hardiness of some northern woody plants assessed from simulation experiments},
	volume = {112},
	issn = {1399-3054},
	url = {https://onlinelibrary.wiley.com/doi/abs/10.1034/j.1399-3054.2001.1120110.x},
	doi = {10.1034/j.1399-3054.2001.1120110.x},
	abstract = {Effects of climatic warming on cold hardiness were investigated for some northern woody plants. In the first experiment, seedlings of Norway spruce (Picea abies [L.] Karst.), Scots pine (Pinus sylvestris L.) and lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) were exposed to naturally fluctuating temperatures averaging −6°C (ambient) and 0°C (elevated) for 16 weeks in midwinter before they were thawed and re-saturated with water. In lodgepole pine, needle sugar concentrations had decreased by 15\%, and the temperature needed to induce 10\% injury to needles in terms of electrolyte leakage had increased by 6°C following treatment to elevated as compared with control temperatures. In contrast, Norway spruce and Scots pine showed no effects. The lack of an effect for Scots pine was ascribed to seedlings containing unusually large energy reserves that buffered respiratory expenditure of sugars. A strong, linear relationship between levels of cold hardiness, assessed by the electrolyte leakage method, and sugars was found when combining data from this and previous, similar experiments. In the second experiment, the evergreen dwarf shrub Empetrum hermaphroditum Hagerup was analysed for leaf cold hardiness, using the electrolyte leakage method, and sugar concentrations in late spring and late autumn during the third year of a warming experiment in a subarctic dwarf shrub community. The objective was to test the hypothesis that warming in the growing season alters hardening/dehardening cycles by increasing soil nitrogen mineralization and plant growth. Data found, however, suggested that cold hardening/dehardening cycles were unaffected by warming.},
	language = {en},
	number = {1},
	urldate = {2021-11-02},
	journal = {Physiologia Plantarum},
	author = {Ögren, Erling},
	year = {2001},
	note = {\_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1034/j.1399-3054.2001.1120110.x},
	pages = {71--77},
}

Downloads: 0