First look at the physics case of TLEP. Group, T. T. D. S. W., Bicer, M., Yildiz, H. D., Yildiz, I., Coignet, G., Delmastro, M., Alexopoulos, T., Grojean, C., Antusch, S., Sen, T., He, H., Potamianos, K., Haug, S., Moreno, A., Heister, A., Sanz, V., Gomez-Ceballos, G., Klute, M., Zanetti, M., Wang, L., Dam, M., Boehm, C., Glover, N., Krauss, F., Lenz, A., Syphers, M., Leonidopoulos, C., Ciulli, V., Lenzi, P., Sguazzoni, G., Antonelli, M., Boscolo, M., Dosselli, U., Frasciello, O., Milardi, C., Venanzoni, G., Zobov, M., Bij, J. v. d., Gruttola, M. d., Kim, D., Bachtis, M., Butterworth, A., Bernet, C., Botta, C., Carminati, F., David, A., Deniau, L., d’Enterria , D., Ganis, G., Goddard, B., Giudice, G., Janot, P., Jowett, J. M., Lourenço, C., Malgeri, L., Meschi, E., Moortgat, F., Musella, P., Osborne, J. A., Perrozzi, L., Pierini, M., Rinolfi, L., Roeck, A. d., Rojo, J., Roy, G., Sciabà, A., Valassi, A., Waaijer, C. S., Wenninger, J., Woehri, H., Zimmermann, F., Blondel, A., Koratzinos, M., Mermod, P., Onel, Y., Talman, R., Miranda, E. C., Bulyak, E., Porsuk, D., Kovalskyi, D., Padhi, S., Faccioli, P., Ellis, J. R., Campanelli, M., Bai, Y., Chamizo, M., Appleby, R. B., Owen, H., Cuna, H. M., Gracios, C., Munoz-Hernandez, G. A., Trentadue, L., Torrente-Lujan, E., Wang, S., Bertsche, D., Gramolin, A., Telnov, V., Kado, M., Petroff, P., Azzi, P., Nicrosini, O., Piccinini, F., Montagna, G., Kapusta, F., Laplace, S., Silva, W. d., Gizani, N., Craig, N., Han, T., Luci, C., Mele, B., Silvestrini, L., Ciuchini, M., Cakir, R., Aleksan, R., Couderc, F., Ganjour, S., Lançon, E., Locci, E., Schwemling, P., Spiro, M., Tanguy, C., Zinn-Justin, J., Moretti, S., Kikuchi, M., Koiso, H., Ohmi, K., Oide, K., Pauletta, G., Austri, R. R. d., Gouzevitch, M., & Chattopadhyay, S. Journal of High Energy Physics, 2014(1):164, January, 2014.
First look at the physics case of TLEP [link]Paper  doi  abstract   bibtex   
The discovery by the ATLAS and CMS experiments of a new boson with mass around 125 GeV and with measured properties compatible with those of a Standard-Model Higgs boson, coupled with the absence of discoveries of phenomena beyond the Standard Model at the TeV scale, has triggered interest in ideas for future Higgs factories. A new circular e+e− collider hosted in a 80 to 100 km tunnel, TLEP, is among the most attractive solutions proposed so far. It has a clean experimental environment, produces high luminosity for top-quark, Higgs boson, W and Z studies, accommodates multiple detectors, and can reach energies up to the tt⎯⎯tt¯ \textbackslashmathrm\t\\textbackslashoverline\\textbackslashmathrm\t\\ threshold and beyond. It will enable measurements of the Higgs boson properties and of Electroweak Symmetry-Breaking (EWSB) parameters with unequalled precision, offering exploration of physics beyond the Standard Model in the multi-TeV range. Moreover, being the natural precursor of the VHE-LHC, a 100 TeV hadron machine in the same tunnel, it builds up a long-term vision for particle physics. Altogether, the combination of TLEP and the VHE-LHC offers, for a great cost effectiveness, the best precision and the best search reach of all options presently on the market. This paper presents a first appraisal of the salient features of the TLEP physics potential, to serve as a baseline for a more extensive design study. Open image in new window
@article{group_first_2014,
	title = {First look at the physics case of {TLEP}},
	volume = {2014},
	issn = {1029-8479},
	url = {https://link.springer.com/article/10.1007/JHEP01(2014)164},
	doi = {10.1007/JHEP01(2014)164},
	abstract = {The discovery by the ATLAS and CMS experiments of a new boson with mass around 125 GeV and with measured properties compatible with those of a Standard-Model Higgs boson, coupled with the absence of discoveries of phenomena beyond the Standard Model at the TeV scale, has triggered interest in ideas for future Higgs factories. A new circular e+e− collider hosted in a 80 to 100 km tunnel, TLEP, is among the most attractive solutions proposed so far. It has a clean experimental environment, produces high luminosity for top-quark, Higgs boson, W and Z studies, accommodates multiple detectors, and can reach energies up to the tt⎯⎯tt¯ {\textbackslash}mathrm\{t\}{\textbackslash}overline\{{\textbackslash}mathrm\{t\}\} threshold and beyond. It will enable measurements of the Higgs boson properties and of Electroweak Symmetry-Breaking (EWSB) parameters with unequalled precision, offering exploration of physics beyond the Standard Model in the multi-TeV range. Moreover, being the natural precursor of the VHE-LHC, a 100 TeV hadron machine in the same tunnel, it builds up a long-term vision for particle physics. Altogether, the combination of TLEP and the VHE-LHC offers, for a great cost effectiveness, the best precision and the best search reach of all options presently on the market. This paper presents a first appraisal of the salient features of the TLEP physics potential, to serve as a baseline for a more extensive design study. Open image in new window},
	language = {en},
	number = {1},
	urldate = {2017-05-11TZ},
	journal = {Journal of High Energy Physics},
	author = {Group, The TLEP Design Study Working and Bicer, M. and Yildiz, H. Duran and Yildiz, I. and Coignet, G. and Delmastro, M. and Alexopoulos, T. and Grojean, C. and Antusch, S. and Sen, T. and He, H.-J. and Potamianos, K. and Haug, S. and Moreno, A. and Heister, A. and Sanz, V. and Gomez-Ceballos, G. and Klute, M. and Zanetti, M. and Wang, L.-T. and Dam, M. and Boehm, C. and Glover, N. and Krauss, F. and Lenz, A. and Syphers, M. and Leonidopoulos, C. and Ciulli, V. and Lenzi, P. and Sguazzoni, G. and Antonelli, M. and Boscolo, M. and Dosselli, U. and Frasciello, O. and Milardi, C. and Venanzoni, G. and Zobov, M. and Bij, J. van der and Gruttola, M. de and Kim, D.-W. and Bachtis, M. and Butterworth, A. and Bernet, C. and Botta, C. and Carminati, F. and David, A. and Deniau, L. and d’Enterria, D. and Ganis, G. and Goddard, B. and Giudice, G. and Janot, P. and Jowett, J. M. and Lourenço, C. and Malgeri, L. and Meschi, E. and Moortgat, F. and Musella, P. and Osborne, J. A. and Perrozzi, L. and Pierini, M. and Rinolfi, L. and Roeck, A. de and Rojo, J. and Roy, G. and Sciabà, A. and Valassi, A. and Waaijer, C. S. and Wenninger, J. and Woehri, H. and Zimmermann, F. and Blondel, A. and Koratzinos, M. and Mermod, P. and Onel, Y. and Talman, R. and Miranda, E. Castaneda and Bulyak, E. and Porsuk, D. and Kovalskyi, D. and Padhi, S. and Faccioli, P. and Ellis, J. R. and Campanelli, M. and Bai, Y. and Chamizo, M. and Appleby, R. B. and Owen, H. and Cuna, H. Maury and Gracios, C. and Munoz-Hernandez, G. A. and Trentadue, L. and Torrente-Lujan, E. and Wang, S. and Bertsche, D. and Gramolin, A. and Telnov, V. and Kado, M. and Petroff, P. and Azzi, P. and Nicrosini, O. and Piccinini, F. and Montagna, G. and Kapusta, F. and Laplace, S. and Silva, W. da and Gizani, N. and Craig, N. and Han, T. and Luci, C. and Mele, B. and Silvestrini, L. and Ciuchini, M. and Cakir, R. and Aleksan, R. and Couderc, F. and Ganjour, S. and Lançon, E. and Locci, E. and Schwemling, P. and Spiro, M. and Tanguy, C. and Zinn-Justin, J. and Moretti, S. and Kikuchi, M. and Koiso, H. and Ohmi, K. and Oide, K. and Pauletta, G. and Austri, R. Ruiz de and Gouzevitch, M. and Chattopadhyay, S.},
	month = jan,
	year = {2014},
	pages = {164}
}

Downloads: 0