Molecular basis for turnover inefficiencies (misses) during water oxidation in photosystem II. Han, G., Chernev, P., Styring, S., Messinger, J., & Mamedov, F. Chemical Science, 13(29):8667–8678, July, 2022. Publisher: The Royal Society of Chemistry
Molecular basis for turnover inefficiencies (misses) during water oxidation in photosystem II [link]Paper  doi  abstract   bibtex   
Photosynthesis stores solar light as chemical energy and efficiency of this process is highly important. The electrons required for CO2 reduction are extracted from water in a reaction driven by light-induced charge separations in the Photosystem II reaction center and catalyzed by the CaMn4O5-cluster. This cyclic process involves five redox intermediates known as the S0–S4 states. In this study, we quantify the flash-induced turnover efficiency of each S state by electron paramagnetic resonance spectroscopy. Measurements were performed in photosystem II membrane preparations from spinach in the presence of an exogenous electron acceptor at selected temperatures between −10 °C and +20 °C and at flash frequencies of 1.25, 5 and 10 Hz. The results show that at optimal conditions the turnover efficiencies are limited by reactions occurring in the water oxidizing complex, allowing the extraction of their S state dependence and correlating low efficiencies to structural changes and chemical events during the reaction cycle. At temperatures 10 °C and below, the highest efficiency (i.e. lowest miss parameter) was found for the S1 → S2 transition, while the S2 → S3 transition was least efficient (highest miss parameter) over the whole temperature range. These electron paramagnetic resonance results were confirmed by measurements of flash-induced oxygen release patterns in thylakoid membranes and are explained on the basis of S state dependent structural changes at the CaMn4O5-cluster that were determined recently by femtosecond X-ray crystallography. Thereby, possible “molecular errors” connected to the e− transfer, H+ transfer, H2O binding and O2 release are identified.
@article{han_molecular_2022,
	title = {Molecular basis for turnover inefficiencies (misses) during water oxidation in photosystem {II}},
	volume = {13},
	issn = {2041-6539},
	url = {https://pubs.rsc.org/en/content/articlelanding/2022/sc/d2sc00854h},
	doi = {10.1039/D2SC00854H},
	abstract = {Photosynthesis stores solar light as chemical energy and efficiency of this process is highly important. The electrons required for CO2 reduction are extracted from water in a reaction driven by light-induced charge separations in the Photosystem II reaction center and catalyzed by the CaMn4O5-cluster. This cyclic process involves five redox intermediates known as the S0–S4 states. In this study, we quantify the flash-induced turnover efficiency of each S state by electron paramagnetic resonance spectroscopy. Measurements were performed in photosystem II membrane preparations from spinach in the presence of an exogenous electron acceptor at selected temperatures between −10 °C and +20 °C and at flash frequencies of 1.25, 5 and 10 Hz. The results show that at optimal conditions the turnover efficiencies are limited by reactions occurring in the water oxidizing complex, allowing the extraction of their S state dependence and correlating low efficiencies to structural changes and chemical events during the reaction cycle. At temperatures 10 °C and below, the highest efficiency (i.e. lowest miss parameter) was found for the S1 → S2 transition, while the S2 → S3 transition was least efficient (highest miss parameter) over the whole temperature range. These electron paramagnetic resonance results were confirmed by measurements of flash-induced oxygen release patterns in thylakoid membranes and are explained on the basis of S state dependent structural changes at the CaMn4O5-cluster that were determined recently by femtosecond X-ray crystallography. Thereby, possible “molecular errors” connected to the e− transfer, H+ transfer, H2O binding and O2 release are identified.},
	language = {en},
	number = {29},
	urldate = {2024-10-16},
	journal = {Chemical Science},
	author = {Han, Guangye and Chernev, Petko and Styring, Stenbjörn and Messinger, Johannes and Mamedov, Fikret},
	month = jul,
	year = {2022},
	note = {Publisher: The Royal Society of Chemistry},
	pages = {8667--8678},
}

Downloads: 0