Geometric camera calibration using circular control points. Heikkila, J. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(10):1066-1077, 2000.
Geometric camera calibration using circular control points [pdf]Paper  Geometric camera calibration using circular control points [link]Website  abstract   bibtex   
Modern CCD cameras are usually capable of a spatial accuracy greater than 1/50 of the pixel size. However, such accuracy is not easily attained due to various error sources that can affect the image formation process. Current calibration methods typically assume that the observations are unbiased, the only error is the zero-mean independent and identically distributed random noise in the observed image coordinates, and the camera model completely explains the mapping between the 3-D coordinates and the image coordinates. In general, these conditions are not met, causing the calibration results to be less accurate than expected. In this paper, a calibration procedure for precise 3-D computer vision applications is described. It introduces bias correction for circular control points and a non-recursive method for reversing the distortion model. The accuracy analysis is presented and the error sources that can reduce the theoretical accuracy are discussed. The tests with synthetic images indicate improvements in the calibration results in limited error conditions. In real images, the suppression of external error sources becomes a prerequisite for successful calibration.

Downloads: 0