auditory cortex: Responses to frequency-modulated stimuli in the cat's posterior auditory field. Heil, P & Irvine, D. J Neurophysiol, 79(6):3041-59, 1998. abstract bibtex The mammalian auditory cortex contains multiple fields but their functional role is poorly understood. Here we examine the responses of single neurons in the posterior auditory field (P) of barbiturate- and ketamine-anesthetized cats to frequency-modulated (FM) sweeps. FM sweeps traversed the excitatory response area of the neuron under study, and FM direction and the linear rate of change of frequency (RCF) were varied systematically. In some neurons, sweeps of different sound pressure levels (SPLs) also were tested. The response magnitude (number of spikes corrected for spontaneous activity) of nearly all field P neurons varied with RCF. RCF response functions displayed a variety of shapes, but most functions were of low-pass characteristic or peaked at rather low RCFs (<100 kHz/s). Neurons with strong responses to high RCFs (high-pass or nonselective RCF response function characteristics) all displayed spike count-SPL functions to tone burst onsets that were monotonic or weakly nonmonotonic. RCF response functions and best RCFs often changed with SPL. For most neurons, FM directional sensitivity, quantified by a directional sensitivity (DS) index, also varied with RCF and SPL, but the mean and width of the distribution of DS indices across all neurons was independent of RCF. Analysis of response timing revealed that the phasic response of a neuron is triggered when the instantaneous frequency of the sweep reaches a particular value, the effective Fi. For a given neuron, values of effective Fi were independent of RCF, but depended on FM direction and SPL and were associated closely with the boundaries of the neuron's frequency versus amplitude response area. The standard deviation (SD) of the latency of the first spike of the response decreased with RCF. When SD was expressed relative to the rate of change of stimulus frequency, the resulting index of frequency jitter increased with RCF and did so rather uniformly in all neurons and largely independent of SPL. These properties suggest that many FM parameters are represented by, and may be encoded in, orderly temporal patterns across different neurons in addition to the strength of responses. When compared with neurons in primary and anterior auditory fields, field P neurons respond better to relatively slow FMs. Together with previous studies of responses to modulations of amplitude, such as tone onsets, our findings suggest more generally that field P may be best suited for processing signals that vary relatively slowly over time.
@Article{Heil1998,
author = {P Heil and DR Irvine},
journal = {J Neurophysiol},
title = {auditory cortex: {R}esponses to frequency-modulated stimuli in the cat's posterior auditory field.},
year = {1998},
number = {6},
pages = {3041-59},
volume = {79},
abstract = {The mammalian auditory cortex contains multiple fields but their functional
role is poorly understood. Here we examine the responses of single
neurons in the posterior auditory field (P) of barbiturate- and ketamine-anesthetized
cats to frequency-modulated (FM) sweeps. FM sweeps traversed the
excitatory response area of the neuron under study, and FM direction
and the linear rate of change of frequency (RCF) were varied systematically.
In some neurons, sweeps of different sound pressure levels (SPLs)
also were tested. The response magnitude (number of spikes corrected
for spontaneous activity) of nearly all field P neurons varied with
RCF. RCF response functions displayed a variety of shapes, but most
functions were of low-pass characteristic or peaked at rather low
RCFs (<100 kHz/s). Neurons with strong responses to high RCFs (high-pass
or nonselective RCF response function characteristics) all displayed
spike count-SPL functions to tone burst onsets that were monotonic
or weakly nonmonotonic. RCF response functions and best RCFs often
changed with SPL. For most neurons, FM directional sensitivity, quantified
by a directional sensitivity (DS) index, also varied with RCF and
SPL, but the mean and width of the distribution of DS indices across
all neurons was independent of RCF. Analysis of response timing revealed
that the phasic response of a neuron is triggered when the instantaneous
frequency of the sweep reaches a particular value, the effective
Fi. For a given neuron, values of effective Fi were independent of
RCF, but depended on FM direction and SPL and were associated closely
with the boundaries of the neuron's frequency versus amplitude response
area. The standard deviation (SD) of the latency of the first spike
of the response decreased with RCF. When SD was expressed relative
to the rate of change of stimulus frequency, the resulting index
of frequency jitter increased with RCF and did so rather uniformly
in all neurons and largely independent of SPL. These properties suggest
that many FM parameters are represented by, and may be encoded in,
orderly temporal patterns across different neurons in addition to
the strength of responses. When compared with neurons in primary
and anterior auditory fields, field P neurons respond better to relatively
slow FMs. Together with previous studies of responses to modulations
of amplitude, such as tone onsets, our findings suggest more generally
that field P may be best suited for processing signals that vary
relatively slowly over time.},
keywords = {Computing Methodologies, Human, Language, Learning, Mental Processes, Models, Theoretical, Stochastic Processes, Support, U.S. Gov't, Non-P.H.S., Cognition, Linguistics, Neural Networks (Computer), Practice (Psychology), Non-U.S. Gov't, Memory, Psychological, Task Performance and Analysis, Time Factors, Visual Perception, Adult, Attention, Discrimination Learning, Female, Male, Short-Term, Mental Recall, Orientation, Pattern Recognition, Visual, Perceptual Masking, Reading, Concept Formation, Form Perception, Animals, Corpus Striatum, Shrews, P.H.S., Visual Cortex, Visual Pathways, Acoustic Stimulation, Auditory Cortex, Auditory Perception, Cochlea, Ear, Gerbillinae, Glycine, Hearing, Neurons, Space Perception, Strychnine, Adolescent, Decision Making, Reaction Time, Astrocytoma, Brain Mapping, Brain Neoplasms, Cerebral Cortex, Electric Stimulation, Electrophysiology, Epilepsy, Temporal Lobe, Evoked Potentials, Frontal Lobe, Noise, Parietal Lobe, Scalp, Child, Language Development, Psycholinguistics, Brain, Perception, Speech, Vocalization, Animal, Discrimination (Psychology), Hippocampus, Rats, Calcium, Chelating Agents, Excitatory Postsynaptic Potentials, Glutamic Acid, Guanosine Diphosphate, In Vitro, Neuronal Plasticity, Pyramidal Cells, Receptors, AMPA, Metabotropic Glutamate, N-Methyl-D-Aspartate, Somatosensory Cortex, Synapses, Synaptic Transmission, Thionucleotides, Action Potentials, Calcium Channels, L-Type, Electric Conductivity, Entorhinal Cortex, Neurological, Long-Evans, Infant, Mathematics, Statistics, Probability Learning, Problem Solving, Psychophysics, Association Learning, Child Psychology, Habituation (Psychophysiology), Probability Theory, Analysis of Variance, Semantics, Symbolism, Behavior, Eye Movements, Macaca mulatta, Prefrontal Cortex, Cats, Dogs, Haplorhini, Photic Stimulation, Electroencephalography, Nervous System Physiology, Darkness, Grasshoppers, Light, Membrane Potentials, Neural Inhibition, Afferent, Picrotoxin, Vision, Deoxyglucose, Injections, Microspheres, Neural Pathways, Rhodamines, Choice Behavior, Speech Perception, Verbal Learning, Dominance, Cerebral, Fixation, Ocular, Language Tests, Random Allocation, Comparative Study, Saguinus, Sound Spectrography, Species Specificity, Audiometry, Auditory Threshold, Calibration, Data Interpretation, Statistical, Anesthesia, General, Electrodes, Implanted, Pitch Perception, Sound Localization, 9636107},
}
Downloads: 0
{"_id":"EYZyaTqQPMAfoLdrT","bibbaseid":"heil-irvine-auditorycortexresponsestofrequencymodulatedstimuliinthecatsposteriorauditoryfield-1998","author_short":["Heil, P","Irvine, D."],"bibdata":{"bibtype":"article","type":"article","author":[{"firstnames":["P"],"propositions":[],"lastnames":["Heil"],"suffixes":[]},{"firstnames":["DR"],"propositions":[],"lastnames":["Irvine"],"suffixes":[]}],"journal":"J Neurophysiol","title":"auditory cortex: Responses to frequency-modulated stimuli in the cat's posterior auditory field.","year":"1998","number":"6","pages":"3041-59","volume":"79","abstract":"The mammalian auditory cortex contains multiple fields but their functional role is poorly understood. Here we examine the responses of single neurons in the posterior auditory field (P) of barbiturate- and ketamine-anesthetized cats to frequency-modulated (FM) sweeps. FM sweeps traversed the excitatory response area of the neuron under study, and FM direction and the linear rate of change of frequency (RCF) were varied systematically. In some neurons, sweeps of different sound pressure levels (SPLs) also were tested. The response magnitude (number of spikes corrected for spontaneous activity) of nearly all field P neurons varied with RCF. RCF response functions displayed a variety of shapes, but most functions were of low-pass characteristic or peaked at rather low RCFs (<100 kHz/s). Neurons with strong responses to high RCFs (high-pass or nonselective RCF response function characteristics) all displayed spike count-SPL functions to tone burst onsets that were monotonic or weakly nonmonotonic. RCF response functions and best RCFs often changed with SPL. For most neurons, FM directional sensitivity, quantified by a directional sensitivity (DS) index, also varied with RCF and SPL, but the mean and width of the distribution of DS indices across all neurons was independent of RCF. Analysis of response timing revealed that the phasic response of a neuron is triggered when the instantaneous frequency of the sweep reaches a particular value, the effective Fi. For a given neuron, values of effective Fi were independent of RCF, but depended on FM direction and SPL and were associated closely with the boundaries of the neuron's frequency versus amplitude response area. The standard deviation (SD) of the latency of the first spike of the response decreased with RCF. When SD was expressed relative to the rate of change of stimulus frequency, the resulting index of frequency jitter increased with RCF and did so rather uniformly in all neurons and largely independent of SPL. These properties suggest that many FM parameters are represented by, and may be encoded in, orderly temporal patterns across different neurons in addition to the strength of responses. When compared with neurons in primary and anterior auditory fields, field P neurons respond better to relatively slow FMs. Together with previous studies of responses to modulations of amplitude, such as tone onsets, our findings suggest more generally that field P may be best suited for processing signals that vary relatively slowly over time.","keywords":"Computing Methodologies, Human, Language, Learning, Mental Processes, Models, Theoretical, Stochastic Processes, Support, U.S. Gov't, Non-P.H.S., Cognition, Linguistics, Neural Networks (Computer), Practice (Psychology), Non-U.S. Gov't, Memory, Psychological, Task Performance and Analysis, Time Factors, Visual Perception, Adult, Attention, Discrimination Learning, Female, Male, Short-Term, Mental Recall, Orientation, Pattern Recognition, Visual, Perceptual Masking, Reading, Concept Formation, Form Perception, Animals, Corpus Striatum, Shrews, P.H.S., Visual Cortex, Visual Pathways, Acoustic Stimulation, Auditory Cortex, Auditory Perception, Cochlea, Ear, Gerbillinae, Glycine, Hearing, Neurons, Space Perception, Strychnine, Adolescent, Decision Making, Reaction Time, Astrocytoma, Brain Mapping, Brain Neoplasms, Cerebral Cortex, Electric Stimulation, Electrophysiology, Epilepsy, Temporal Lobe, Evoked Potentials, Frontal Lobe, Noise, Parietal Lobe, Scalp, Child, Language Development, Psycholinguistics, Brain, Perception, Speech, Vocalization, Animal, Discrimination (Psychology), Hippocampus, Rats, Calcium, Chelating Agents, Excitatory Postsynaptic Potentials, Glutamic Acid, Guanosine Diphosphate, In Vitro, Neuronal Plasticity, Pyramidal Cells, Receptors, AMPA, Metabotropic Glutamate, N-Methyl-D-Aspartate, Somatosensory Cortex, Synapses, Synaptic Transmission, Thionucleotides, Action Potentials, Calcium Channels, L-Type, Electric Conductivity, Entorhinal Cortex, Neurological, Long-Evans, Infant, Mathematics, Statistics, Probability Learning, Problem Solving, Psychophysics, Association Learning, Child Psychology, Habituation (Psychophysiology), Probability Theory, Analysis of Variance, Semantics, Symbolism, Behavior, Eye Movements, Macaca mulatta, Prefrontal Cortex, Cats, Dogs, Haplorhini, Photic Stimulation, Electroencephalography, Nervous System Physiology, Darkness, Grasshoppers, Light, Membrane Potentials, Neural Inhibition, Afferent, Picrotoxin, Vision, Deoxyglucose, Injections, Microspheres, Neural Pathways, Rhodamines, Choice Behavior, Speech Perception, Verbal Learning, Dominance, Cerebral, Fixation, Ocular, Language Tests, Random Allocation, Comparative Study, Saguinus, Sound Spectrography, Species Specificity, Audiometry, Auditory Threshold, Calibration, Data Interpretation, Statistical, Anesthesia, General, Electrodes, Implanted, Pitch Perception, Sound Localization, 9636107","bibtex":"@Article{Heil1998,\n author = {P Heil and DR Irvine},\n journal = {J Neurophysiol},\n title = {auditory cortex: {R}esponses to frequency-modulated stimuli in the cat's posterior auditory field.},\n year = {1998},\n number = {6},\n pages = {3041-59},\n volume = {79},\n abstract = {The mammalian auditory cortex contains multiple fields but their functional\n\trole is poorly understood. Here we examine the responses of single\n\tneurons in the posterior auditory field (P) of barbiturate- and ketamine-anesthetized\n\tcats to frequency-modulated (FM) sweeps. FM sweeps traversed the\n\texcitatory response area of the neuron under study, and FM direction\n\tand the linear rate of change of frequency (RCF) were varied systematically.\n\tIn some neurons, sweeps of different sound pressure levels (SPLs)\n\talso were tested. The response magnitude (number of spikes corrected\n\tfor spontaneous activity) of nearly all field P neurons varied with\n\tRCF. RCF response functions displayed a variety of shapes, but most\n\tfunctions were of low-pass characteristic or peaked at rather low\n\tRCFs (<100 kHz/s). Neurons with strong responses to high RCFs (high-pass\n\tor nonselective RCF response function characteristics) all displayed\n\tspike count-SPL functions to tone burst onsets that were monotonic\n\tor weakly nonmonotonic. RCF response functions and best RCFs often\n\tchanged with SPL. For most neurons, FM directional sensitivity, quantified\n\tby a directional sensitivity (DS) index, also varied with RCF and\n\tSPL, but the mean and width of the distribution of DS indices across\n\tall neurons was independent of RCF. Analysis of response timing revealed\n\tthat the phasic response of a neuron is triggered when the instantaneous\n\tfrequency of the sweep reaches a particular value, the effective\n\tFi. For a given neuron, values of effective Fi were independent of\n\tRCF, but depended on FM direction and SPL and were associated closely\n\twith the boundaries of the neuron's frequency versus amplitude response\n\tarea. The standard deviation (SD) of the latency of the first spike\n\tof the response decreased with RCF. When SD was expressed relative\n\tto the rate of change of stimulus frequency, the resulting index\n\tof frequency jitter increased with RCF and did so rather uniformly\n\tin all neurons and largely independent of SPL. These properties suggest\n\tthat many FM parameters are represented by, and may be encoded in,\n\torderly temporal patterns across different neurons in addition to\n\tthe strength of responses. When compared with neurons in primary\n\tand anterior auditory fields, field P neurons respond better to relatively\n\tslow FMs. Together with previous studies of responses to modulations\n\tof amplitude, such as tone onsets, our findings suggest more generally\n\tthat field P may be best suited for processing signals that vary\n\trelatively slowly over time.},\n keywords = {Computing Methodologies, Human, Language, Learning, Mental Processes, Models, Theoretical, Stochastic Processes, Support, U.S. Gov't, Non-P.H.S., Cognition, Linguistics, Neural Networks (Computer), Practice (Psychology), Non-U.S. Gov't, Memory, Psychological, Task Performance and Analysis, Time Factors, Visual Perception, Adult, Attention, Discrimination Learning, Female, Male, Short-Term, Mental Recall, Orientation, Pattern Recognition, Visual, Perceptual Masking, Reading, Concept Formation, Form Perception, Animals, Corpus Striatum, Shrews, P.H.S., Visual Cortex, Visual Pathways, Acoustic Stimulation, Auditory Cortex, Auditory Perception, Cochlea, Ear, Gerbillinae, Glycine, Hearing, Neurons, Space Perception, Strychnine, Adolescent, Decision Making, Reaction Time, Astrocytoma, Brain Mapping, Brain Neoplasms, Cerebral Cortex, Electric Stimulation, Electrophysiology, Epilepsy, Temporal Lobe, Evoked Potentials, Frontal Lobe, Noise, Parietal Lobe, Scalp, Child, Language Development, Psycholinguistics, Brain, Perception, Speech, Vocalization, Animal, Discrimination (Psychology), Hippocampus, Rats, Calcium, Chelating Agents, Excitatory Postsynaptic Potentials, Glutamic Acid, Guanosine Diphosphate, In Vitro, Neuronal Plasticity, Pyramidal Cells, Receptors, AMPA, Metabotropic Glutamate, N-Methyl-D-Aspartate, Somatosensory Cortex, Synapses, Synaptic Transmission, Thionucleotides, Action Potentials, Calcium Channels, L-Type, Electric Conductivity, Entorhinal Cortex, Neurological, Long-Evans, Infant, Mathematics, Statistics, Probability Learning, Problem Solving, Psychophysics, Association Learning, Child Psychology, Habituation (Psychophysiology), Probability Theory, Analysis of Variance, Semantics, Symbolism, Behavior, Eye Movements, Macaca mulatta, Prefrontal Cortex, Cats, Dogs, Haplorhini, Photic Stimulation, Electroencephalography, Nervous System Physiology, Darkness, Grasshoppers, Light, Membrane Potentials, Neural Inhibition, Afferent, Picrotoxin, Vision, Deoxyglucose, Injections, Microspheres, Neural Pathways, Rhodamines, Choice Behavior, Speech Perception, Verbal Learning, Dominance, Cerebral, Fixation, Ocular, Language Tests, Random Allocation, Comparative Study, Saguinus, Sound Spectrography, Species Specificity, Audiometry, Auditory Threshold, Calibration, Data Interpretation, Statistical, Anesthesia, General, Electrodes, Implanted, Pitch Perception, Sound Localization, 9636107},\n}\n\n","author_short":["Heil, P","Irvine, D."],"key":"Heil1998","id":"Heil1998","bibbaseid":"heil-irvine-auditorycortexresponsestofrequencymodulatedstimuliinthecatsposteriorauditoryfield-1998","role":"author","urls":{},"keyword":["Computing Methodologies","Human","Language","Learning","Mental Processes","Models","Theoretical","Stochastic Processes","Support","U.S. Gov't","Non-P.H.S.","Cognition","Linguistics","Neural Networks (Computer)","Practice (Psychology)","Non-U.S. Gov't","Memory","Psychological","Task Performance and Analysis","Time Factors","Visual Perception","Adult","Attention","Discrimination Learning","Female","Male","Short-Term","Mental Recall","Orientation","Pattern Recognition","Visual","Perceptual Masking","Reading","Concept Formation","Form Perception","Animals","Corpus Striatum","Shrews","P.H.S.","Visual Cortex","Visual Pathways","Acoustic Stimulation","Auditory Cortex","Auditory Perception","Cochlea","Ear","Gerbillinae","Glycine","Hearing","Neurons","Space Perception","Strychnine","Adolescent","Decision Making","Reaction Time","Astrocytoma","Brain Mapping","Brain Neoplasms","Cerebral Cortex","Electric Stimulation","Electrophysiology","Epilepsy","Temporal Lobe","Evoked Potentials","Frontal Lobe","Noise","Parietal Lobe","Scalp","Child","Language Development","Psycholinguistics","Brain","Perception","Speech","Vocalization","Animal","Discrimination (Psychology)","Hippocampus","Rats","Calcium","Chelating Agents","Excitatory Postsynaptic Potentials","Glutamic Acid","Guanosine Diphosphate","In Vitro","Neuronal Plasticity","Pyramidal Cells","Receptors","AMPA","Metabotropic Glutamate","N-Methyl-D-Aspartate","Somatosensory Cortex","Synapses","Synaptic Transmission","Thionucleotides","Action Potentials","Calcium Channels","L-Type","Electric Conductivity","Entorhinal Cortex","Neurological","Long-Evans","Infant","Mathematics","Statistics","Probability Learning","Problem Solving","Psychophysics","Association Learning","Child Psychology","Habituation (Psychophysiology)","Probability Theory","Analysis of Variance","Semantics","Symbolism","Behavior","Eye Movements","Macaca mulatta","Prefrontal Cortex","Cats","Dogs","Haplorhini","Photic Stimulation","Electroencephalography","Nervous System Physiology","Darkness","Grasshoppers","Light","Membrane Potentials","Neural Inhibition","Afferent","Picrotoxin","Vision","Deoxyglucose","Injections","Microspheres","Neural Pathways","Rhodamines","Choice Behavior","Speech Perception","Verbal Learning","Dominance","Cerebral","Fixation","Ocular","Language Tests","Random Allocation","Comparative Study","Saguinus","Sound Spectrography","Species Specificity","Audiometry","Auditory Threshold","Calibration","Data Interpretation","Statistical","Anesthesia","General","Electrodes","Implanted","Pitch Perception","Sound Localization","9636107"],"metadata":{"authorlinks":{}}},"bibtype":"article","biburl":"https://endress.org/publications/ansgar.bib","dataSources":["xPGxHAeh3vZpx4yyE","TXa55dQbNoWnaGmMq"],"keywords":["computing methodologies","human","language","learning","mental processes","models","theoretical","stochastic processes","support","u.s. gov't","non-p.h.s.","cognition","linguistics","neural networks (computer)","practice (psychology)","non-u.s. gov't","memory","psychological","task performance and analysis","time factors","visual perception","adult","attention","discrimination learning","female","male","short-term","mental recall","orientation","pattern recognition","visual","perceptual masking","reading","concept formation","form perception","animals","corpus striatum","shrews","p.h.s.","visual cortex","visual pathways","acoustic stimulation","auditory cortex","auditory perception","cochlea","ear","gerbillinae","glycine","hearing","neurons","space perception","strychnine","adolescent","decision making","reaction time","astrocytoma","brain mapping","brain neoplasms","cerebral cortex","electric stimulation","electrophysiology","epilepsy","temporal lobe","evoked potentials","frontal lobe","noise","parietal lobe","scalp","child","language development","psycholinguistics","brain","perception","speech","vocalization","animal","discrimination (psychology)","hippocampus","rats","calcium","chelating agents","excitatory postsynaptic potentials","glutamic acid","guanosine diphosphate","in vitro","neuronal plasticity","pyramidal cells","receptors","ampa","metabotropic glutamate","n-methyl-d-aspartate","somatosensory cortex","synapses","synaptic transmission","thionucleotides","action potentials","calcium channels","l-type","electric conductivity","entorhinal cortex","neurological","long-evans","infant","mathematics","statistics","probability learning","problem solving","psychophysics","association learning","child psychology","habituation (psychophysiology)","probability theory","analysis of variance","semantics","symbolism","behavior","eye movements","macaca mulatta","prefrontal cortex","cats","dogs","haplorhini","photic stimulation","electroencephalography","nervous system physiology","darkness","grasshoppers","light","membrane potentials","neural inhibition","afferent","picrotoxin","vision","deoxyglucose","injections","microspheres","neural pathways","rhodamines","choice behavior","speech perception","verbal learning","dominance","cerebral","fixation","ocular","language tests","random allocation","comparative study","saguinus","sound spectrography","species specificity","audiometry","auditory threshold","calibration","data interpretation","statistical","anesthesia","general","electrodes","implanted","pitch perception","sound localization","9636107"],"search_terms":["auditory","cortex","responses","frequency","modulated","stimuli","cat","posterior","auditory","field","heil","irvine"],"title":"auditory cortex: Responses to frequency-modulated stimuli in the cat's posterior auditory field.","year":1998}