Baseline and post-stress seasonal changes in immunocompetence and redox state maintenance in the fishing bat Myotis vivesi. Hernández-Arciga, U., M, L. G. H., Ibáñez-Contreras, A., Miranda-Labra, R. U., Flores-Martínez, J. J., & Königsberg, M. PLOS ONE, 13(1):e0190047, January, 2018. Publisher: Public Library of Science
Baseline and post-stress seasonal changes in immunocompetence and redox state maintenance in the fishing bat Myotis vivesi [link]Paper  doi  abstract   bibtex   
Little is known of how the stress response varies when animals confront seasonal life-history processes. Antioxidant defenses and damage caused by oxidative stress and their link with immunocompetence are powerful biomarkers to assess animal´s physiological stress response. The aim of this study was A) to determine redox state and variation in basal (pre-acute stress) immune function during summer, autumn and winter (spring was not assessed due to restrictions in collecting permit) in the fish-eating Myotis (Myotis vivesi; Chiroptera), and B) to determine the effect of acute stress on immunocompetence and redox state during each season. Acute stress was stimulated by restricting animal movement for 6 and 12 h. The magnitude of the cellular immune response was higher during winter whilst that of the humoral response was at its highest during summer. Humoral response increased after 6 h of movement restriction stress and returned to baseline levels after 12 h. Basal redox state was maintained throughout the year, with no significant changes in protein damage, and antioxidant activity was modulated mainly in relation to variation to environment cues, increasing during high temperatures and decreasing during windy nights. Antioxidant activity increased after the 6 h of stressful stimuli especially during summer and autumn, and to a lesser extent in early winter, but redox state did not vary. However, protein damage increased after 12 h of stress during summer. Prolonged stress when the bat is engaged in activities of high energy demand overcame its capacity to maintain homeostasis resulting in oxidative damage.
@article{hernandez-arciga_baseline_2018,
	title = {Baseline and post-stress seasonal changes in immunocompetence and redox state maintenance in the fishing bat {Myotis} vivesi},
	volume = {13},
	issn = {1932-6203},
	url = {https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0190047},
	doi = {10.1371/journal.pone.0190047},
	abstract = {Little is known of how the stress response varies when animals confront seasonal life-history processes. Antioxidant defenses and damage caused by oxidative stress and their link with immunocompetence are powerful biomarkers to assess animal´s physiological stress response. The aim of this study was A) to determine redox state and variation in basal (pre-acute stress) immune function during summer, autumn and winter (spring was not assessed due to restrictions in collecting permit) in the fish-eating Myotis (Myotis vivesi; Chiroptera), and B) to determine the effect of acute stress on immunocompetence and redox state during each season. Acute stress was stimulated by restricting animal movement for 6 and 12 h. The magnitude of the cellular immune response was higher during winter whilst that of the humoral response was at its highest during summer. Humoral response increased after 6 h of movement restriction stress and returned to baseline levels after 12 h. Basal redox state was maintained throughout the year, with no significant changes in protein damage, and antioxidant activity was modulated mainly in relation to variation to environment cues, increasing during high temperatures and decreasing during windy nights. Antioxidant activity increased after the 6 h of stressful stimuli especially during summer and autumn, and to a lesser extent in early winter, but redox state did not vary. However, protein damage increased after 12 h of stress during summer. Prolonged stress when the bat is engaged in activities of high energy demand overcame its capacity to maintain homeostasis resulting in oxidative damage.},
	language = {en},
	number = {1},
	urldate = {2022-08-15},
	journal = {PLOS ONE},
	author = {Hernández-Arciga, Ulalume and M, L. Gerardo Herrera and Ibáñez-Contreras, Alejandra and Miranda-Labra, Roxana U. and Flores-Martínez, José Juan and Königsberg, Mina},
	month = jan,
	year = {2018},
	note = {Publisher: Public Library of Science},
	keywords = {Antioxidants, Autumn, Immune response, Oxidation-reduction reactions, Principal component analysis, Seasons, Summer, Winter},
	pages = {e0190047},
}

Downloads: 0