Versatile Gene-Specific Sequence Tags for Arabidopsis Functional Genomics: Transcript Profiling and Reverse Genetics Applications. Hilson, P., Allemeersch, J., Altmann, T., Aubourg, S., Avon, A., Beynon, J., Bhalerao, R. P., Bitton, F., Caboche, M., Cannoot, B., Chardakov, V., Cognet-Holliger, C., Colot, V., Crowe, M., Darimont, C., Durinck, S., Eickhoff, H., Longevialle, A. F. d., Farmer, E. E., Grant, M., Kuiper, M. T. R., Lehrach, H., Léon, C., Leyva, A., Lundeberg, J., Lurin, C., Moreau, Y., Nietfeld, W., Paz-Ares, J., Reymond, P., Rouzé, P., Sandberg, G., Segura, M. D., Serizet, C., Tabrett, A., Taconnat, L., Thareau, V., Hummelen, P. V., Vercruysse, S., Vuylsteke, M., Weingartner, M., Weisbeek, P. J., Wirta, V., Wittink, F. R. A., Zabeau, M., & Small, I. Genome Research, 14(10b):2176–2189, October, 2004. Company: Cold Spring Harbor Laboratory Press Distributor: Cold Spring Harbor Laboratory Press Institution: Cold Spring Harbor Laboratory Press Label: Cold Spring Harbor Laboratory Press Publisher: Cold Spring Harbor Lab
Versatile Gene-Specific Sequence Tags for Arabidopsis Functional Genomics: Transcript Profiling and Reverse Genetics Applications [link]Paper  doi  abstract   bibtex   
Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics.
@article{hilson_versatile_2004,
	title = {Versatile {Gene}-{Specific} {Sequence} {Tags} for {Arabidopsis} {Functional} {Genomics}: {Transcript} {Profiling} and {Reverse} {Genetics} {Applications}},
	volume = {14},
	issn = {1088-9051, 1549-5469},
	shorttitle = {Versatile {Gene}-{Specific} {Sequence} {Tags} for {Arabidopsis} {Functional} {Genomics}},
	url = {https://genome.cshlp.org/content/14/10b/2176},
	doi = {10/brkpzf},
	abstract = {Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics.},
	language = {en},
	number = {10b},
	urldate = {2021-06-30},
	journal = {Genome Research},
	author = {Hilson, Pierre and Allemeersch, Joke and Altmann, Thomas and Aubourg, Sébastien and Avon, Alexandra and Beynon, Jim and Bhalerao, Rishikesh P. and Bitton, Frédérique and Caboche, Michel and Cannoot, Bernard and Chardakov, Vasil and Cognet-Holliger, Cécile and Colot, Vincent and Crowe, Mark and Darimont, Caroline and Durinck, Steffen and Eickhoff, Holger and Longevialle, Andéol Falcon de and Farmer, Edward E. and Grant, Murray and Kuiper, Martin T. R. and Lehrach, Hans and Léon, Céline and Leyva, Antonio and Lundeberg, Joakim and Lurin, Claire and Moreau, Yves and Nietfeld, Wilfried and Paz-Ares, Javier and Reymond, Philippe and Rouzé, Pierre and Sandberg, Goran and Segura, Maria Dolores and Serizet, Carine and Tabrett, Alexandra and Taconnat, Ludivine and Thareau, Vincent and Hummelen, Paul Van and Vercruysse, Steven and Vuylsteke, Marnik and Weingartner, Magdalena and Weisbeek, Peter J. and Wirta, Valtteri and Wittink, Floyd R. A. and Zabeau, Marc and Small, Ian},
	month = oct,
	year = {2004},
	pmid = {15489341},
	note = {Company: Cold Spring Harbor Laboratory Press
Distributor: Cold Spring Harbor Laboratory Press
Institution: Cold Spring Harbor Laboratory Press
Label: Cold Spring Harbor Laboratory Press
Publisher: Cold Spring Harbor Lab},
	pages = {2176--2189},
}

Downloads: 0