A MATLAB GUI for the analysis and reconstruction of signal and image data of a SAFT-based 3D Ultrasound Computer Tomograph. Hopp, T., Schwarzenberg, G. F, Zapf, M., & Ruiter, N. V 00004
abstract   bibtex   
At Forschungszentrum Karlsruhe, a new imaging system for early diagnosis of breast cancer is currently developed. The 3D Ultrasound Computer Tomograph (USCT) consists of approximately 2000 ultrasound transducers, which produce 3.5 million A-scans (amplitude scans) summing up to 20 GB of raw data for one image. The large number of A-scans, the large amount of data and the complex relationship between raw data and reconstructed image makes analysis, understanding and further development difficult for the scientists and especially for new employees and students. For this reason, an interactive graphical user interface (GUI) was developed using MATLAB. It integrates existent analysis methods and is easily extendable with new functionality via a plugin concept. The software provides several visualization functions for the raw data, the reconstructed 3D images, the USCT aperture and the relationships between them. This approaches demonstrate that MATLAB is not only applicable as programming language for numerical problems, but also adequate for representing complex systems by a GUI. It has a large benefit for the working group as it is used as common development platform: The plugin concept is widely used to integrate new analysis methods and share them with the rest of the scientists. The GUI and the visualization of the complex relationships of the USCT reduces the training period for new employees and students. An evaluation of the usability shows that the users evaluated the user interface to be very helpful, clearly arranged and beneficial for a better understanding of the coherencies of the USCT system.
@article{hopp_matlab_nodate,
	title = {A {MATLAB} {GUI} for the analysis and reconstruction of signal and image data of a {SAFT}-based {3D} {Ultrasound} {Computer} {Tomograph}},
	abstract = {At Forschungszentrum Karlsruhe, a new imaging system for early diagnosis of breast cancer is currently developed. The 3D Ultrasound Computer Tomograph (USCT) consists of approximately 2000 ultrasound transducers, which produce 3.5 million A-scans (amplitude scans) summing up to 20 GB of raw data for one image. The large number of A-scans, the large amount of data and the complex relationship between raw data and reconstructed image makes analysis, understanding and further development difficult for the scientists and especially for new employees and students. For this reason, an interactive graphical user interface (GUI) was developed using MATLAB. It integrates existent analysis methods and is easily extendable with new functionality via a plugin concept. The software provides several visualization functions for the raw data, the reconstructed 3D images, the USCT aperture and the relationships between them. This approaches demonstrate that MATLAB is not only applicable as programming language for numerical problems, but also adequate for representing complex systems by a GUI. It has a large benefit for the working group as it is used as common development platform: The plugin concept is widely used to integrate new analysis methods and share them with the rest of the scientists. The GUI and the visualization of the complex relationships of the USCT reduces the training period for new employees and students. An evaluation of the usability shows that the users evaluated the user interface to be very helpful, clearly arranged and beneficial for a better understanding of the coherencies of the USCT system.},
	language = {en},
	author = {Hopp, Torsten and Schwarzenberg, Gregor F and Zapf, Michael and Ruiter, Nicole V},
	note = {00004},
	keywords = {⛔ No DOI found},
	pages = {11},
}

Downloads: 0