Expression and evolution of functionally distinct haemoglobin genes in plants. Hunt, P., W., Watts, R., A., Trevaskis, B., Llewelyn, D., J., Burnell, J., Dennis, E., S., & Peacock, W., J. Plant Molecular Biology, 47(5):677-692, 2001.
Expression and evolution of functionally distinct haemoglobin genes in plants. [link]Website  abstract   bibtex   
Haemoglobin genes have been found in a number of plant species, but the number of genes known has been too small to allow effective evolutionary inferences. We present nine new non-symbiotic haemoglobin sequences from a range of plants, including class 1 haemoglobins from cotton, Citrus and tomato, class 2 haemoglobins from cotton, tomato, sugar beet and canola and two haemoglobins from the non-vascular plants, Marchantia polymorpha (a liverwort) and Physcomitrella patens (a moss). Our molecular phylogenetic analysis of all currently known non-symbiotic haemoglobin genes and a selection of symbiotic haemoglobins have confirmed the existence of two distinct classes of haemoglobin genes in the dicots. It is likely that all dicots have both class 1 and class 2 non-symbiotic haemoglobin genes whereas in monocots we have detected only class 1 genes. The symbiotic haemoglobins from legumes and Casuarina are related to the class 2 non-symbiotic haemoglobins, whilst the symbiotic haemoglobin from Parasponia groups with the class 1 non-symbiotic genes. Probably, there have been two independent recruitments of symbiotic haemoglobins. Although the functions of the two non-symbiotic haemoglobins remain unknown, their patterns of expression within plants suggest different functions. We examined the expression in transgenic plants of the two non-symbiotic haemoglobins from Arabidopsis using promoter fusions to a GUS reporter gene. The Arabidopsis GLB1 and GLB2 genes are likely to be functionally distinct. The class 2 haemoglobin gene (GLB2) is expressed in the roots, leaves and inflorescence and can be induced in young plants by cytokinin treatment in contrast to the class 1 gene (GLB1) which is active in germinating seedlings and can be induced by hypoxia and increased sucrose supply, but not by cytokinin treatment.
@article{
 title = {Expression and evolution of functionally distinct haemoglobin genes in plants.},
 type = {article},
 year = {2001},
 pages = {677-692},
 volume = {47},
 websites = {http://www.ncbi.nlm.nih.gov/pubmed/11725952},
 institution = {CSIRO Division of Plant Industry, Black Mountain, Canberra, ACT, Australia.},
 id = {ca3aae21-1a1f-3fc6-8e25-b8caf2553259},
 created = {2011-05-20T17:26:14.000Z},
 file_attached = {false},
 profile_id = {b6c31fe8-61c6-3818-89a8-62873f3171f3},
 group_id = {7bdcaa0c-1528-351f-a09a-f8da52223946},
 last_modified = {2011-05-20T17:26:14.000Z},
 read = {false},
 starred = {false},
 authored = {false},
 confirmed = {true},
 hidden = {false},
 abstract = {Haemoglobin genes have been found in a number of plant species, but the number of genes known has been too small to allow effective evolutionary inferences. We present nine new non-symbiotic haemoglobin sequences from a range of plants, including class 1 haemoglobins from cotton, Citrus and tomato, class 2 haemoglobins from cotton, tomato, sugar beet and canola and two haemoglobins from the non-vascular plants, Marchantia polymorpha (a liverwort) and Physcomitrella patens (a moss). Our molecular phylogenetic analysis of all currently known non-symbiotic haemoglobin genes and a selection of symbiotic haemoglobins have confirmed the existence of two distinct classes of haemoglobin genes in the dicots. It is likely that all dicots have both class 1 and class 2 non-symbiotic haemoglobin genes whereas in monocots we have detected only class 1 genes. The symbiotic haemoglobins from legumes and Casuarina are related to the class 2 non-symbiotic haemoglobins, whilst the symbiotic haemoglobin from Parasponia groups with the class 1 non-symbiotic genes. Probably, there have been two independent recruitments of symbiotic haemoglobins. Although the functions of the two non-symbiotic haemoglobins remain unknown, their patterns of expression within plants suggest different functions. We examined the expression in transgenic plants of the two non-symbiotic haemoglobins from Arabidopsis using promoter fusions to a GUS reporter gene. The Arabidopsis GLB1 and GLB2 genes are likely to be functionally distinct. The class 2 haemoglobin gene (GLB2) is expressed in the roots, leaves and inflorescence and can be induced in young plants by cytokinin treatment in contrast to the class 1 gene (GLB1) which is active in germinating seedlings and can be induced by hypoxia and increased sucrose supply, but not by cytokinin treatment.},
 bibtype = {article},
 author = {Hunt, P W and Watts, R A and Trevaskis, B and Llewelyn, D J and Burnell, J and Dennis, E S and Peacock, W J},
 journal = {Plant Molecular Biology},
 number = {5}
}
Downloads: 0