Nature and catalytic role of active silver species in the lean NO x reduction with C3H6 in the presence of water. Iglesias-Juez, A, Hungría, A B, Martínez-Arias, A, Fuerte, A, Fernández-García, M, Anderson, J A, Conesa, J C, & Soria, J Journal of Catalysis, 217(2):310–323, Inst. de Catalisis y Petroleoquimica, CSIC, Campus Cantoblanco, 28049 Madrid, Spain, 2003.
Paper abstract bibtex A study of the lean NOx reduction activity with propene in the presence of water over Ag/Al2O3 catalysts with different silver loadings (1.5-6 wt%) has been done using X-ray diffraction, ultraviolet-visible spectroscopy, transmission electron microscopy, and in situ diffuse reflectance infrared and X-ray absorption spectroscopies under reaction conditions. The catalysts were prepared by an impregnation method employing EDTA complexes that allow highly dispersed silver phases to be obtained, which are stabilized under reaction conditions by strong interactions with the support. It is shown that the active species corresponds to silver aluminate-like phases with tetrahedral local symmetry. The role of silver in the reaction mechanism is shown to be mainly in the activation of NO x and propene species. In particular, the silver entities have been found to offer a new reaction path for propene activation which involves generation of acrylate species as a partially oxidized active intermediate. Differences between two active catalysts containing 1.5 and 4.5 wt% of Ag suggest that optimization of the SCR activity can be related to the oxygen lability of the tetrahedral silver aluminate-like phase present in the catalyst. As postulated previously, the high nonselective propene oxidation activity of the highest loaded sample (with 6 wt% Ag) appears to be related to formation of metallic silver surface states at low reaction temperatures which are active for NO dissociation. © 2003 Elsevier Science (USA). All rights reserved.
@article{Iglesias-Juez2003,
abstract = {A study of the lean NOx reduction activity with propene in the presence of water over Ag/Al2O3 catalysts with different silver loadings (1.5-6 wt%) has been done using X-ray diffraction, ultraviolet-visible spectroscopy, transmission electron microscopy, and in situ diffuse reflectance infrared and X-ray absorption spectroscopies under reaction conditions. The catalysts were prepared by an impregnation method employing EDTA complexes that allow highly dispersed silver phases to be obtained, which are stabilized under reaction conditions by strong interactions with the support. It is shown that the active species corresponds to silver aluminate-like phases with tetrahedral local symmetry. The role of silver in the reaction mechanism is shown to be mainly in the activation of NO x and propene species. In particular, the silver entities have been found to offer a new reaction path for propene activation which involves generation of acrylate species as a partially oxidized active intermediate. Differences between two active catalysts containing 1.5 and 4.5 wt% of Ag suggest that optimization of the SCR activity can be related to the oxygen lability of the tetrahedral silver aluminate-like phase present in the catalyst. As postulated previously, the high nonselective propene oxidation activity of the highest loaded sample (with 6 wt% Ag) appears to be related to formation of metallic silver surface states at low reaction temperatures which are active for NO dissociation. © 2003 Elsevier Science (USA). All rights reserved.},
address = {Inst. de Catalisis y Petroleoquimica, CSIC, Campus Cantoblanco, 28049 Madrid, Spain},
annote = {Cited By (since 1996): 51
Export Date: 15 January 2013
Source: Scopus
doi: 10.1016/S0021-9517(03)00055-1
Language of Original Document: English
Correspondence Address: Fern\'{a}ndez-Garc\'{\i}a, M.; Inst. de Catalisis y Petroleoquimica, CSIC, Campus Cantoblanco, 28049 Madrid, Spain; email: m.fernandez@icp.csic.es
Chemicals/CAS: acrylic acid, 10344-93-1, 79-10-7; edetic acid, 150-43-6, 60-00-4; nitric oxide, 10102-43-9; oxygen, 7782-44-7; propylene, 115-07-1; silver, 7440-22-4; sodium, 7440-23-5; water, 7732-18-5
References: Iwamoto, M., Yokoo, S., Saaki, K., Kagawa, S., (1981) J. Chem. Soc. Faraday Trans. 1, 77, p. 1629;
Parvulescu, V.I., Grange, P., Delmon, B., (1998) Catal. Today, 46, p. 233;
Jen, H.-W., (1998) Catal. Today, 42, p. 37;
Miyadera, T., Yoshida, K., (1993) Chem. Lett., p. 1483;
Furisawa, T., Seshan, K., Lercher, J.A., Leffterts, L., Aika, K.-I., (2002) Appl. Catal. B, 37, p. 205;
Burch, R., Millington, P.J., Walker, A.P., (1994) Appl. Catal. B, 4, p. 65;
Burch, R., Watling, T.C., (1997) Appl. Catal. B, 11, p. 207;
Miyadera, T., (1993) Appl. Catal. B, 2, p. 199;
Kung, M.C., Kung, H.H., (2000) Topics Catal., 10, p. 21;
Sumiya, S., Saito, M., He, H., Feng, Q.-C., Takezawa, N., Yoshida, K., (1998) Catal. Lett., 50, p. 87;
Angelidis, T.N., Kruse, N., (2001) Appl. Catal. B, 34, p. 201;
Meunier, F.C., Ukropec, R., Stapleton, C., Ross, J.R.H., (2001) Appl. Catal. B, 30, p. 163;
Abe, A., Aoyama, N., Sumiya, S., Kakuta, N., Yoshida, K., (1998) Catal. Lett., 51, p. 5;
Miyadera, T., (1998) Appl. Catal. B, 16, p. 155;
Bethke, K.A., Kung, H.H., (1997) J. Catal., 172, p. 93;
Shimizu, K.-I., Shibata, J., Yoshida, H., Satsuma, A., Hattori, T., (2001) Appl. Catal. B, 30, p. 151;
Bogdanchikova, N., Meunier, F.C., Avalos-Borja, M., Breen, J.P., Prstryakov, A., (2002) Appl. Catal. B, 36, p. 287;
Mart\'{\i}nez-Arias, A., Fern\'{a}ndez-Garc\'{\i}a, M., Iglesias-Juez, A., Anderson, J.A., Conesa, J.C., Soria, J., (2000) Appl. Catal. B, 28, p. 29;
Nakatsuji, T., Yasukawa, R., Tabata, K., Ueda, K., Niwa, M., (1998) Appl. Catal. B, 17, p. 333;
Li, Z., Flytzani-Stephanopoulos, M., (1997) Appl. Catal. A, 165, p. 15;
Stern, E.A., (1993) Phys. Rev. B, 48, p. 9825;
Meunier, F.C., Breen, J.P., Zuzaniuk, V., Olsson, M., Ross, J.R.H., (1999) J. Catal., 187, p. 93;
Gerlach, T., Illgen, U., Bartoszek, M., Baerns, M., (1999) Appl. Catal. B, 22, p. 269;
Kn\"{o}zinger, H., Ratnasamy, P., (1978) Catal. Rev. Sci. Eng., 17, p. 31;
Anderson, J.A., Rochester, C.H., (2002) Encyclopedia of Surface and Colloid Science, p. 2528. , A. Hubbard. New York: Dekker;
Hadjiivanov, K., (2000) Catal. Rev. Sci. Eng., 42, p. 71;
Davydov, A.A., (1984) Infrared Spectroscopy of Adsorbed Species on the Surface of Transition Metal Oxides, , New York: Wiley;
Zuzaniuk, V., Meunier, F.C., Ross, J.R.H., (2001) J. Catal., 202, p. 340;
Shimizu, K.-I., Kawabata, H., Satsuma, A., Hattori, T., (1999) J. Phys. Chem. B, 103, p. 5240;
Underwood, G.M., Miller, T.M., Grassian, V.H., (1999) J. Phys. Chem. A, 103, p. 6184;
Gessner, W., (1967) Z. Anorg. Allg. Chem., 352, p. 145;
Fern\'{a}ndez-Garc\'{\i}a, M., M\'{a}rquez, C., Haller, G.L., (1995) J. Phys. Chem., 99, p. 12565;
Fern\'{a}ndez-Garc\'{\i}a, M., (2002) Catal. Rev. Sci. Eng., 44, p. 59;
Hirsimaki, M., Valden, M., (2001) J. Chem. Phys., 114, p. 2345;
Sumiya, S., He, H., Abe, A., Takezawa, N., Yoshida, K., (1998) J. Chem. Soc., Faraday Trans., 94, p. 2217;
Shimizu, K.-I., Shibata, J., Satsuma, A., Hattori, T., (2001) Phys. Chem. Chem. Phys., 3, p. 880;
Lee, J.-H., Yezerets, A., Kung, M.C., Kung, H.H., (2001) Chem. Commun., p. 1404;
Gerlach, T., Sch\"{u}tze, F.-W., Baerns, M., (1999) J. Catal., 185, p. 131;
Hadjiivanov, K., Saussey, J., Freysz, J.L., Lavalley, J.C., (1998) Catal. Lett., 52, p. 103},
author = {Iglesias-Juez, A and Hungr\'{\i}a, A B and Mart\'{\i}nez-Arias, A and Fuerte, A and Fern\'{a}ndez-Garc\'{\i}a, M and Anderson, J A and Conesa, J C and Soria, J},
issn = {00219517 (ISSN)},
journal = {Journal of Catalysis},
keywords = {Ag/Al2O3 catalysts,In situ DRIFTS,NOx-propene SCR,TEM,UV-vis,X ray diffraction,XAFS,XRD,absorption spectroscopy,acrylic acid,aluminum derivative,article,catalysis,catalyst,dissociation,edetic acid,infrared spectroscopy,low temperature,nitric oxide,oxidation kinetics,oxygen,propylene,reaction analysis,reduction,reflectometry,roentgen spectroscopy,silver,sodium,temperature dependence,transmission electron microscopy,ultraviolet spectroscopy,water},
number = {2},
pages = {310--323},
title = {{Nature and catalytic role of active silver species in the lean NO x reduction with C3H6 in the presence of water}},
url = {https://www.scopus.com/inward/record.url?eid=2-s2.0-0141564576&partnerID=40&md5=e97933d523d74e7d659276de28971f93},
volume = {217},
year = {2003}
}
Downloads: 0
{"_id":"cRDZFrykkPk6Jabe3","bibbaseid":"iglesiasjuez-hungra-martnezarias-fuerte-fernndezgarca-anderson-conesa-soria-natureandcatalyticroleofactivesilverspeciesintheleannoxreductionwithc3h6inthepresenceofwater-2003","downloads":0,"creationDate":"2015-12-06T18:10:15.416Z","title":"Nature and catalytic role of active silver species in the lean NO x reduction with C3H6 in the presence of water","author_short":["Iglesias-Juez, A","Hungría, A B","Martínez-Arias, A","Fuerte, A","Fernández-García, M","Anderson, J A","Conesa, J C","Soria, J"],"year":2003,"bibtype":"article","biburl":"www2.uca.es/dept/cmat_qinor/nanomat/people/Hungria.bib","bibdata":{"bibtype":"article","type":"article","abstract":"A study of the lean NOx reduction activity with propene in the presence of water over Ag/Al2O3 catalysts with different silver loadings (1.5-6 wt%) has been done using X-ray diffraction, ultraviolet-visible spectroscopy, transmission electron microscopy, and in situ diffuse reflectance infrared and X-ray absorption spectroscopies under reaction conditions. The catalysts were prepared by an impregnation method employing EDTA complexes that allow highly dispersed silver phases to be obtained, which are stabilized under reaction conditions by strong interactions with the support. It is shown that the active species corresponds to silver aluminate-like phases with tetrahedral local symmetry. The role of silver in the reaction mechanism is shown to be mainly in the activation of NO x and propene species. In particular, the silver entities have been found to offer a new reaction path for propene activation which involves generation of acrylate species as a partially oxidized active intermediate. Differences between two active catalysts containing 1.5 and 4.5 wt% of Ag suggest that optimization of the SCR activity can be related to the oxygen lability of the tetrahedral silver aluminate-like phase present in the catalyst. As postulated previously, the high nonselective propene oxidation activity of the highest loaded sample (with 6 wt% Ag) appears to be related to formation of metallic silver surface states at low reaction temperatures which are active for NO dissociation. © 2003 Elsevier Science (USA). All rights reserved.","address":"Inst. de Catalisis y Petroleoquimica, CSIC, Campus Cantoblanco, 28049 Madrid, Spain","annote":"Cited By (since 1996): 51 Export Date: 15 January 2013 Source: Scopus doi: 10.1016/S0021-9517(03)00055-1 Language of Original Document: English Correspondence Address: Fernández-García, M.; Inst. de Catalisis y Petroleoquimica, CSIC, Campus Cantoblanco, 28049 Madrid, Spain; email: m.fernandez@icp.csic.es Chemicals/CAS: acrylic acid, 10344-93-1, 79-10-7; edetic acid, 150-43-6, 60-00-4; nitric oxide, 10102-43-9; oxygen, 7782-44-7; propylene, 115-07-1; silver, 7440-22-4; sodium, 7440-23-5; water, 7732-18-5 References: Iwamoto, M., Yokoo, S., Saaki, K., Kagawa, S., (1981) J. Chem. Soc. Faraday Trans. 1, 77, p. 1629; Parvulescu, V.I., Grange, P., Delmon, B., (1998) Catal. Today, 46, p. 233; Jen, H.-W., (1998) Catal. Today, 42, p. 37; Miyadera, T., Yoshida, K., (1993) Chem. Lett., p. 1483; Furisawa, T., Seshan, K., Lercher, J.A., Leffterts, L., Aika, K.-I., (2002) Appl. Catal. B, 37, p. 205; Burch, R., Millington, P.J., Walker, A.P., (1994) Appl. Catal. B, 4, p. 65; Burch, R., Watling, T.C., (1997) Appl. Catal. B, 11, p. 207; Miyadera, T., (1993) Appl. Catal. B, 2, p. 199; Kung, M.C., Kung, H.H., (2000) Topics Catal., 10, p. 21; Sumiya, S., Saito, M., He, H., Feng, Q.-C., Takezawa, N., Yoshida, K., (1998) Catal. Lett., 50, p. 87; Angelidis, T.N., Kruse, N., (2001) Appl. Catal. B, 34, p. 201; Meunier, F.C., Ukropec, R., Stapleton, C., Ross, J.R.H., (2001) Appl. Catal. B, 30, p. 163; Abe, A., Aoyama, N., Sumiya, S., Kakuta, N., Yoshida, K., (1998) Catal. Lett., 51, p. 5; Miyadera, T., (1998) Appl. Catal. B, 16, p. 155; Bethke, K.A., Kung, H.H., (1997) J. Catal., 172, p. 93; Shimizu, K.-I., Shibata, J., Yoshida, H., Satsuma, A., Hattori, T., (2001) Appl. Catal. B, 30, p. 151; Bogdanchikova, N., Meunier, F.C., Avalos-Borja, M., Breen, J.P., Prstryakov, A., (2002) Appl. Catal. B, 36, p. 287; Martínez-Arias, A., Fernández-García, M., Iglesias-Juez, A., Anderson, J.A., Conesa, J.C., Soria, J., (2000) Appl. Catal. B, 28, p. 29; Nakatsuji, T., Yasukawa, R., Tabata, K., Ueda, K., Niwa, M., (1998) Appl. Catal. B, 17, p. 333; Li, Z., Flytzani-Stephanopoulos, M., (1997) Appl. Catal. A, 165, p. 15; Stern, E.A., (1993) Phys. Rev. B, 48, p. 9825; Meunier, F.C., Breen, J.P., Zuzaniuk, V., Olsson, M., Ross, J.R.H., (1999) J. Catal., 187, p. 93; Gerlach, T., Illgen, U., Bartoszek, M., Baerns, M., (1999) Appl. Catal. B, 22, p. 269; Knözinger, H., Ratnasamy, P., (1978) Catal. Rev. Sci. Eng., 17, p. 31; Anderson, J.A., Rochester, C.H., (2002) Encyclopedia of Surface and Colloid Science, p. 2528. , A. Hubbard. New York: Dekker; Hadjiivanov, K., (2000) Catal. Rev. Sci. Eng., 42, p. 71; Davydov, A.A., (1984) Infrared Spectroscopy of Adsorbed Species on the Surface of Transition Metal Oxides, , New York: Wiley; Zuzaniuk, V., Meunier, F.C., Ross, J.R.H., (2001) J. Catal., 202, p. 340; Shimizu, K.-I., Kawabata, H., Satsuma, A., Hattori, T., (1999) J. Phys. Chem. B, 103, p. 5240; Underwood, G.M., Miller, T.M., Grassian, V.H., (1999) J. Phys. Chem. A, 103, p. 6184; Gessner, W., (1967) Z. Anorg. Allg. Chem., 352, p. 145; Fernández-García, M., Márquez, C., Haller, G.L., (1995) J. Phys. Chem., 99, p. 12565; Fernández-García, M., (2002) Catal. Rev. Sci. Eng., 44, p. 59; Hirsimaki, M., Valden, M., (2001) J. Chem. Phys., 114, p. 2345; Sumiya, S., He, H., Abe, A., Takezawa, N., Yoshida, K., (1998) J. Chem. Soc., Faraday Trans., 94, p. 2217; Shimizu, K.-I., Shibata, J., Satsuma, A., Hattori, T., (2001) Phys. Chem. Chem. Phys., 3, p. 880; Lee, J.-H., Yezerets, A., Kung, M.C., Kung, H.H., (2001) Chem. Commun., p. 1404; Gerlach, T., Schütze, F.-W., Baerns, M., (1999) J. Catal., 185, p. 131; Hadjiivanov, K., Saussey, J., Freysz, J.L., Lavalley, J.C., (1998) Catal. Lett., 52, p. 103","author":[{"propositions":[],"lastnames":["Iglesias-Juez"],"firstnames":["A"],"suffixes":[]},{"propositions":[],"lastnames":["Hungría"],"firstnames":["A","B"],"suffixes":[]},{"propositions":[],"lastnames":["Martínez-Arias"],"firstnames":["A"],"suffixes":[]},{"propositions":[],"lastnames":["Fuerte"],"firstnames":["A"],"suffixes":[]},{"propositions":[],"lastnames":["Fernández-García"],"firstnames":["M"],"suffixes":[]},{"propositions":[],"lastnames":["Anderson"],"firstnames":["J","A"],"suffixes":[]},{"propositions":[],"lastnames":["Conesa"],"firstnames":["J","C"],"suffixes":[]},{"propositions":[],"lastnames":["Soria"],"firstnames":["J"],"suffixes":[]}],"issn":"00219517 (ISSN)","journal":"Journal of Catalysis","keywords":"Ag/Al2O3 catalysts,In situ DRIFTS,NOx-propene SCR,TEM,UV-vis,X ray diffraction,XAFS,XRD,absorption spectroscopy,acrylic acid,aluminum derivative,article,catalysis,catalyst,dissociation,edetic acid,infrared spectroscopy,low temperature,nitric oxide,oxidation kinetics,oxygen,propylene,reaction analysis,reduction,reflectometry,roentgen spectroscopy,silver,sodium,temperature dependence,transmission electron microscopy,ultraviolet spectroscopy,water","number":"2","pages":"310–323","title":"Nature and catalytic role of active silver species in the lean NO x reduction with C3H6 in the presence of water","url":"https://www.scopus.com/inward/record.url?eid=2-s2.0-0141564576&partnerID=40&md5=e97933d523d74e7d659276de28971f93","volume":"217","year":"2003","bibtex":"@article{Iglesias-Juez2003,\nabstract = {A study of the lean NOx reduction activity with propene in the presence of water over Ag/Al2O3 catalysts with different silver loadings (1.5-6 wt%) has been done using X-ray diffraction, ultraviolet-visible spectroscopy, transmission electron microscopy, and in situ diffuse reflectance infrared and X-ray absorption spectroscopies under reaction conditions. The catalysts were prepared by an impregnation method employing EDTA complexes that allow highly dispersed silver phases to be obtained, which are stabilized under reaction conditions by strong interactions with the support. It is shown that the active species corresponds to silver aluminate-like phases with tetrahedral local symmetry. The role of silver in the reaction mechanism is shown to be mainly in the activation of NO x and propene species. In particular, the silver entities have been found to offer a new reaction path for propene activation which involves generation of acrylate species as a partially oxidized active intermediate. Differences between two active catalysts containing 1.5 and 4.5 wt% of Ag suggest that optimization of the SCR activity can be related to the oxygen lability of the tetrahedral silver aluminate-like phase present in the catalyst. As postulated previously, the high nonselective propene oxidation activity of the highest loaded sample (with 6 wt% Ag) appears to be related to formation of metallic silver surface states at low reaction temperatures which are active for NO dissociation. © 2003 Elsevier Science (USA). All rights reserved.},\naddress = {Inst. de Catalisis y Petroleoquimica, CSIC, Campus Cantoblanco, 28049 Madrid, Spain},\nannote = {Cited By (since 1996): 51\n\n \nExport Date: 15 January 2013\n\n \nSource: Scopus\n\n \ndoi: 10.1016/S0021-9517(03)00055-1\n\n \nLanguage of Original Document: English\n\n \nCorrespondence Address: Fern\\'{a}ndez-Garc\\'{\\i}a, M.; Inst. de Catalisis y Petroleoquimica, CSIC, Campus Cantoblanco, 28049 Madrid, Spain; email: m.fernandez@icp.csic.es\n\n \nChemicals/CAS: acrylic acid, 10344-93-1, 79-10-7; edetic acid, 150-43-6, 60-00-4; nitric oxide, 10102-43-9; oxygen, 7782-44-7; propylene, 115-07-1; silver, 7440-22-4; sodium, 7440-23-5; water, 7732-18-5\n\n \nReferences: Iwamoto, M., Yokoo, S., Saaki, K., Kagawa, S., (1981) J. Chem. Soc. Faraday Trans. 1, 77, p. 1629; \nParvulescu, V.I., Grange, P., Delmon, B., (1998) Catal. Today, 46, p. 233; \nJen, H.-W., (1998) Catal. Today, 42, p. 37; \nMiyadera, T., Yoshida, K., (1993) Chem. Lett., p. 1483; \nFurisawa, T., Seshan, K., Lercher, J.A., Leffterts, L., Aika, K.-I., (2002) Appl. Catal. B, 37, p. 205; \nBurch, R., Millington, P.J., Walker, A.P., (1994) Appl. Catal. B, 4, p. 65; \nBurch, R., Watling, T.C., (1997) Appl. Catal. B, 11, p. 207; \nMiyadera, T., (1993) Appl. Catal. B, 2, p. 199; \nKung, M.C., Kung, H.H., (2000) Topics Catal., 10, p. 21; \nSumiya, S., Saito, M., He, H., Feng, Q.-C., Takezawa, N., Yoshida, K., (1998) Catal. Lett., 50, p. 87; \nAngelidis, T.N., Kruse, N., (2001) Appl. Catal. B, 34, p. 201; \nMeunier, F.C., Ukropec, R., Stapleton, C., Ross, J.R.H., (2001) Appl. Catal. B, 30, p. 163; \nAbe, A., Aoyama, N., Sumiya, S., Kakuta, N., Yoshida, K., (1998) Catal. Lett., 51, p. 5; \nMiyadera, T., (1998) Appl. Catal. B, 16, p. 155; \nBethke, K.A., Kung, H.H., (1997) J. Catal., 172, p. 93; \nShimizu, K.-I., Shibata, J., Yoshida, H., Satsuma, A., Hattori, T., (2001) Appl. Catal. B, 30, p. 151; \nBogdanchikova, N., Meunier, F.C., Avalos-Borja, M., Breen, J.P., Prstryakov, A., (2002) Appl. Catal. B, 36, p. 287; \nMart\\'{\\i}nez-Arias, A., Fern\\'{a}ndez-Garc\\'{\\i}a, M., Iglesias-Juez, A., Anderson, J.A., Conesa, J.C., Soria, J., (2000) Appl. Catal. B, 28, p. 29; \nNakatsuji, T., Yasukawa, R., Tabata, K., Ueda, K., Niwa, M., (1998) Appl. Catal. B, 17, p. 333; \nLi, Z., Flytzani-Stephanopoulos, M., (1997) Appl. Catal. A, 165, p. 15; \nStern, E.A., (1993) Phys. Rev. B, 48, p. 9825; \nMeunier, F.C., Breen, J.P., Zuzaniuk, V., Olsson, M., Ross, J.R.H., (1999) J. Catal., 187, p. 93; \nGerlach, T., Illgen, U., Bartoszek, M., Baerns, M., (1999) Appl. Catal. B, 22, p. 269; \nKn\\\"{o}zinger, H., Ratnasamy, P., (1978) Catal. Rev. Sci. Eng., 17, p. 31; \nAnderson, J.A., Rochester, C.H., (2002) Encyclopedia of Surface and Colloid Science, p. 2528. , A. Hubbard. New York: Dekker; \nHadjiivanov, K., (2000) Catal. Rev. Sci. Eng., 42, p. 71; \nDavydov, A.A., (1984) Infrared Spectroscopy of Adsorbed Species on the Surface of Transition Metal Oxides, , New York: Wiley; \nZuzaniuk, V., Meunier, F.C., Ross, J.R.H., (2001) J. Catal., 202, p. 340; \nShimizu, K.-I., Kawabata, H., Satsuma, A., Hattori, T., (1999) J. Phys. Chem. B, 103, p. 5240; \nUnderwood, G.M., Miller, T.M., Grassian, V.H., (1999) J. Phys. Chem. A, 103, p. 6184; \nGessner, W., (1967) Z. Anorg. Allg. Chem., 352, p. 145; \nFern\\'{a}ndez-Garc\\'{\\i}a, M., M\\'{a}rquez, C., Haller, G.L., (1995) J. Phys. Chem., 99, p. 12565; \nFern\\'{a}ndez-Garc\\'{\\i}a, M., (2002) Catal. Rev. Sci. Eng., 44, p. 59; \nHirsimaki, M., Valden, M., (2001) J. Chem. Phys., 114, p. 2345; \nSumiya, S., He, H., Abe, A., Takezawa, N., Yoshida, K., (1998) J. Chem. Soc., Faraday Trans., 94, p. 2217; \nShimizu, K.-I., Shibata, J., Satsuma, A., Hattori, T., (2001) Phys. Chem. Chem. Phys., 3, p. 880; \nLee, J.-H., Yezerets, A., Kung, M.C., Kung, H.H., (2001) Chem. Commun., p. 1404; \nGerlach, T., Sch\\\"{u}tze, F.-W., Baerns, M., (1999) J. Catal., 185, p. 131; \nHadjiivanov, K., Saussey, J., Freysz, J.L., Lavalley, J.C., (1998) Catal. Lett., 52, p. 103},\nauthor = {Iglesias-Juez, A and Hungr\\'{\\i}a, A B and Mart\\'{\\i}nez-Arias, A and Fuerte, A and Fern\\'{a}ndez-Garc\\'{\\i}a, M and Anderson, J A and Conesa, J C and Soria, J},\nissn = {00219517 (ISSN)},\njournal = {Journal of Catalysis},\nkeywords = {Ag/Al2O3 catalysts,In situ DRIFTS,NOx-propene SCR,TEM,UV-vis,X ray diffraction,XAFS,XRD,absorption spectroscopy,acrylic acid,aluminum derivative,article,catalysis,catalyst,dissociation,edetic acid,infrared spectroscopy,low temperature,nitric oxide,oxidation kinetics,oxygen,propylene,reaction analysis,reduction,reflectometry,roentgen spectroscopy,silver,sodium,temperature dependence,transmission electron microscopy,ultraviolet spectroscopy,water},\nnumber = {2},\npages = {310--323},\ntitle = {{Nature and catalytic role of active silver species in the lean NO x reduction with C3H6 in the presence of water}},\nurl = {https://www.scopus.com/inward/record.url?eid=2-s2.0-0141564576&partnerID=40&md5=e97933d523d74e7d659276de28971f93},\nvolume = {217},\nyear = {2003}\n}\n","author_short":["Iglesias-Juez, A","Hungría, A B","Martínez-Arias, A","Fuerte, A","Fernández-García, M","Anderson, J A","Conesa, J C","Soria, J"],"key":"Iglesias-Juez2003","id":"Iglesias-Juez2003","bibbaseid":"iglesiasjuez-hungra-martnezarias-fuerte-fernndezgarca-anderson-conesa-soria-natureandcatalyticroleofactivesilverspeciesintheleannoxreductionwithc3h6inthepresenceofwater-2003","role":"author","urls":{"Paper":"https://www.scopus.com/inward/record.url?eid=2-s2.0-0141564576&partnerID=40&md5=e97933d523d74e7d659276de28971f93"},"keyword":["Ag/Al2O3 catalysts","In situ DRIFTS","NOx-propene SCR","TEM","UV-vis","X ray diffraction","XAFS","XRD","absorption spectroscopy","acrylic acid","aluminum derivative","article","catalysis","catalyst","dissociation","edetic acid","infrared spectroscopy","low temperature","nitric oxide","oxidation kinetics","oxygen","propylene","reaction analysis","reduction","reflectometry","roentgen spectroscopy","silver","sodium","temperature dependence","transmission electron microscopy","ultraviolet spectroscopy","water"],"downloads":0,"html":"","metadata":{"authorlinks":{}}},"search_terms":["nature","catalytic","role","active","silver","species","lean","reduction","c3h6","presence","water","iglesias-juez","hungría","martínez-arias","fuerte","fernández-garcía","anderson","conesa","soria"],"keywords":["ag/al2o3 catalysts","in situ drifts","nox-propene scr","tem","uv-vis","x ray diffraction","xafs","xrd","absorption spectroscopy","acrylic acid","aluminum derivative","article","catalysis","catalyst","dissociation","edetic acid","infrared spectroscopy","low temperature","nitric oxide","oxidation kinetics","oxygen","propylene","reaction analysis","reduction","reflectometry","roentgen spectroscopy","silver","sodium","temperature dependence","transmission electron microscopy","ultraviolet spectroscopy","water"],"authorIDs":[],"dataSources":["tkoLgiggidjAYidGW","SLACAPmRHCzNG5tYN","BraPrFTJMD8Pu6SQ6"]}