nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J., & Maier-Hein, K. H. Nature Methods, December, 2020.
Paper doi bibtex @article{isensee_nnu-net_2020,
title = {{nnU}-{Net}: a self-configuring method for deep learning-based biomedical image segmentation},
issn = {1548-7091, 1548-7105},
shorttitle = {{nnU}-{Net}},
url = {http://www.nature.com/articles/s41592-020-01008-z},
doi = {10/ghns3w},
language = {en},
urldate = {2021-01-26},
journal = {Nature Methods},
author = {Isensee, Fabian and Jaeger, Paul F. and Kohl, Simon A. A. and Petersen, Jens and Maier-Hein, Klaus H.},
month = dec,
year = {2020},
}
Downloads: 0
{"_id":"iGxA4j7ju7BrHiSWL","bibbaseid":"isensee-jaeger-kohl-petersen-maierhein-nnunetaselfconfiguringmethodfordeeplearningbasedbiomedicalimagesegmentation-2020","author_short":["Isensee, F.","Jaeger, P. F.","Kohl, S. A. A.","Petersen, J.","Maier-Hein, K. H."],"bibdata":{"bibtype":"article","type":"article","title":"nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation","issn":"1548-7091, 1548-7105","shorttitle":"nnU-Net","url":"http://www.nature.com/articles/s41592-020-01008-z","doi":"10/ghns3w","language":"en","urldate":"2021-01-26","journal":"Nature Methods","author":[{"propositions":[],"lastnames":["Isensee"],"firstnames":["Fabian"],"suffixes":[]},{"propositions":[],"lastnames":["Jaeger"],"firstnames":["Paul","F."],"suffixes":[]},{"propositions":[],"lastnames":["Kohl"],"firstnames":["Simon","A.","A."],"suffixes":[]},{"propositions":[],"lastnames":["Petersen"],"firstnames":["Jens"],"suffixes":[]},{"propositions":[],"lastnames":["Maier-Hein"],"firstnames":["Klaus","H."],"suffixes":[]}],"month":"December","year":"2020","bibtex":"@article{isensee_nnu-net_2020,\n\ttitle = {{nnU}-{Net}: a self-configuring method for deep learning-based biomedical image segmentation},\n\tissn = {1548-7091, 1548-7105},\n\tshorttitle = {{nnU}-{Net}},\n\turl = {http://www.nature.com/articles/s41592-020-01008-z},\n\tdoi = {10/ghns3w},\n\tlanguage = {en},\n\turldate = {2021-01-26},\n\tjournal = {Nature Methods},\n\tauthor = {Isensee, Fabian and Jaeger, Paul F. and Kohl, Simon A. A. and Petersen, Jens and Maier-Hein, Klaus H.},\n\tmonth = dec,\n\tyear = {2020},\n}\n\n\n\n","author_short":["Isensee, F.","Jaeger, P. F.","Kohl, S. A. A.","Petersen, J.","Maier-Hein, K. H."],"key":"isensee_nnu-net_2020","id":"isensee_nnu-net_2020","bibbaseid":"isensee-jaeger-kohl-petersen-maierhein-nnunetaselfconfiguringmethodfordeeplearningbasedbiomedicalimagesegmentation-2020","role":"author","urls":{"Paper":"http://www.nature.com/articles/s41592-020-01008-z"},"metadata":{"authorlinks":{}},"downloads":0,"html":""},"bibtype":"article","biburl":"https://bibbase.org/zotero/apolea","dataSources":["f9QNc6eirHM3cmhSh"],"keywords":[],"search_terms":["nnu","net","self","configuring","method","deep","learning","based","biomedical","image","segmentation","isensee","jaeger","kohl","petersen","maier-hein"],"title":"nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation","year":2020}