Coordinate System Archive for Coevolution. Jaśkowski, W. & Krawiec, K. In Evolutionary Computation (CEC), 2010 IEEE Congress on, pages 1-10, 2010. IEEE.
abstract   bibtex   
Problems in which some entities interact with each other are common in computational intelligence. This scenario, typical for co-evolving artificial-life agents, learning strategies for games, and machine learning from examples, can be formalized as test-based problem. In test-based problems, candidate solutions are evaluated on a number of test cases (agents, opponents, examples). It has been recently shown that at least some of such problems posses underlying problem structure, which can be formalized in a notion of coordinate system, which spatially arranges candidate solutions and tests in a multidimensional space. Such a coordinate system can be extracted to reveal underlying objectives of the problem, which can be then further exploited to help coevolutionary algorithm make progress. In this study, we propose a novel coevolutionary archive method, called Coordinate System Archive (COSA) that is based on these concepts. In the experimental part, we compare COSA to two state-of-the-art archive methods, IPCA and LAPCA. Using two different objective performance measures, we find out that COSA is superior to these methods on a class of artificial problems (compare-on-one).
@inproceedings{ Jaskowski10coordinate,
  author    = {Wojciech Jaśkowski and Krzysztof Krawiec},
  title     = {Coordinate System Archive for Coevolution}, 
  abstract   = {Problems in which some entities interact with each other are common in computational intelligence. This scenario, typical for co-evolving artificial-life agents, learning strategies for games, and machine learning from examples, can be formalized as test-based problem. In test-based problems, candidate solutions are evaluated on a number of test cases (agents, opponents, examples). It has been recently shown that at least some of such problems posses underlying problem structure, which can be formalized in a notion of coordinate system, which spatially arranges candidate solutions and tests in a multidimensional space. Such a coordinate system can be extracted to reveal underlying objectives of the problem, which can be then further exploited to help coevolutionary algorithm make progress. In this study, we propose a novel coevolutionary archive method, called Coordinate System Archive (COSA) that is based on these concepts. In the experimental part, we compare COSA to two state-of-the-art archive methods, IPCA and LAPCA. Using two different objective performance measures, we find out that COSA is superior to these methods on a class of artificial problems (compare-on-one).},
  booktitle   = {Evolutionary Computation (CEC), 2010 IEEE Congress on},
  organization   = {IEEE},
  pages   = {1-10} ,
  year   = {2010}
}
Downloads: 0