Mixtral of Experts. Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bamford, C., Chaplot, D. S., Casas, D. d. l., Hanna, E. B., Bressand, F., Lengyel, G., Bour, G., Lample, G., Lavaud, L. R., Saulnier, L., Lachaux, M., Stock, P., Subramanian, S., Yang, S., Antoniak, S., Scao, T. L., Gervet, T., Lavril, T., Wang, T., Lacroix, T., & Sayed, W. E. January, 2024. arXiv:2401.04088 [cs]
Mixtral of Experts [link]Paper  doi  abstract   bibtex   
We introduce Mixtral 8x7B, a Sparse Mixture of Experts (SMoE) language model. Mixtral has the same architecture as Mistral 7B, with the difference that each layer is composed of 8 feedforward blocks (i.e. experts). For every token, at each layer, a router network selects two experts to process the current state and combine their outputs. Even though each token only sees two experts, the selected experts can be different at each timestep. As a result, each token has access to 47B parameters, but only uses 13B active parameters during inference. Mixtral was trained with a context size of 32k tokens and it outperforms or matches Llama 2 70B and GPT-3.5 across all evaluated benchmarks. In particular, Mixtral vastly outperforms Llama 2 70B on mathematics, code generation, and multilingual benchmarks. We also provide a model fine-tuned to follow instructions, Mixtral 8x7B - Instruct, that surpasses GPT-3.5 Turbo, Claude-2.1, Gemini Pro, and Llama 2 70B - chat model on human benchmarks. Both the base and instruct models are released under the Apache 2.0 license.
@misc{jiang_mixtral_2024,
	title = {Mixtral of {Experts}},
	url = {http://arxiv.org/abs/2401.04088},
	doi = {10.48550/arXiv.2401.04088},
	abstract = {We introduce Mixtral 8x7B, a Sparse Mixture of Experts (SMoE) language model. Mixtral has the same architecture as Mistral 7B, with the difference that each layer is composed of 8 feedforward blocks (i.e. experts). For every token, at each layer, a router network selects two experts to process the current state and combine their outputs. Even though each token only sees two experts, the selected experts can be different at each timestep. As a result, each token has access to 47B parameters, but only uses 13B active parameters during inference. Mixtral was trained with a context size of 32k tokens and it outperforms or matches Llama 2 70B and GPT-3.5 across all evaluated benchmarks. In particular, Mixtral vastly outperforms Llama 2 70B on mathematics, code generation, and multilingual benchmarks. We also provide a model fine-tuned to follow instructions, Mixtral 8x7B - Instruct, that surpasses GPT-3.5 Turbo, Claude-2.1, Gemini Pro, and Llama 2 70B - chat model on human benchmarks. Both the base and instruct models are released under the Apache 2.0 license.},
	urldate = {2024-03-15},
	publisher = {arXiv},
	author = {Jiang, Albert Q. and Sablayrolles, Alexandre and Roux, Antoine and Mensch, Arthur and Savary, Blanche and Bamford, Chris and Chaplot, Devendra Singh and Casas, Diego de las and Hanna, Emma Bou and Bressand, Florian and Lengyel, Gianna and Bour, Guillaume and Lample, Guillaume and Lavaud, Lélio Renard and Saulnier, Lucile and Lachaux, Marie-Anne and Stock, Pierre and Subramanian, Sandeep and Yang, Sophia and Antoniak, Szymon and Scao, Teven Le and Gervet, Théophile and Lavril, Thibaut and Wang, Thomas and Lacroix, Timothée and Sayed, William El},
	month = jan,
	year = {2024},
	note = {arXiv:2401.04088 [cs]},
	keywords = {Computer Science - Computation and Language, Computer Science - Machine Learning},
}

Downloads: 0