A connectionist actor-critic algorithm for faster learning and biological plausibility. Johard, L. & Ruffaldi, E. In Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages 3903-3909, May, 2014.
doi  bibtex   
@INPROCEEDINGS{johard2014,
author={Johard, L. and Ruffaldi, E.},
roles={Johard:funded},
booktitle={Robotics and Automation (ICRA), 2014 IEEE International Conference on},
title={A connectionist actor-critic algorithm for faster learning and biological plausibility},
year={2014},
month={May},
pages={3903-3909},
keywords={biology computing;gradient methods;learning (artificial intelligence);neural nets;biologically plausible actor-critic algorithm;connectionist actor-critic algorithm;dopaminergic signaling patterns;intrinsic reward system;model-free reinforcement learning;neural actor-critic;polecart problem;policy gradients;Backpropagation;Biological system modeling;Learning (artificial intelligence);Neurons;Supervised learning;Training,pid:CP14.2,ugov:yes,pdf:2014_C_ICRA_Johard,scopus:yes},
doi={10.1109/ICRA.2014.6907425},
}

Downloads: 0